
 M2M.GEMALTO.COM

Java User’s Guide
Users Guide

Version: 07
DocId: ehsx_java_usersguide_v07

Products: Cinterion® EHS5, Cinterion® EHS6, Cinterion® EHS6-A, Cinterion® EHS8

GENERAL NOTE
THE USE OF THE PRODUCT INCLUDING THE SOFTWARE AND DOCUMENTATION (THE "PROD-
UCT") IS SUBJECT TO THE RELEASE NOTE PROVIDED TOGETHER WITH PRODUCT. IN ANY
EVENT THE PROVISIONS OF THE RELEASE NOTE SHALL PREVAIL. THIS DOCUMENT CONTAINS
INFORMATION ON GEMALTO M2M PRODUCTS. THE SPECIFICATIONS IN THIS DOCUMENT ARE
SUBJECT TO CHANGE AT GEMALTO M2M'S DISCRETION. GEMALTO M2M GMBH GRANTS A NON-
EXCLUSIVE RIGHT TO USE THE PRODUCT. THE RECIPIENT SHALL NOT TRANSFER, COPY,
MODIFY, TRANSLATE, REVERSE ENGINEER, CREATE DERIVATIVE WORKS; DISASSEMBLE OR
DECOMPILE THE PRODUCT OR OTHERWISE USE THE PRODUCT EXCEPT AS SPECIFICALLY
AUTHORIZED. THE PRODUCT AND THIS DOCUMENT ARE PROVIDED ON AN "AS IS" BASIS ONLY
AND MAY CONTAIN DEFICIENCIES OR INADEQUACIES. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, GEMALTO M2M GMBH DISCLAIMS ALL WARRANTIES AND LIABILITIES.
THE RECIPIENT UNDERTAKES FOR AN UNLIMITED PERIOD OF TIME TO OBSERVE SECRECY
REGARDING ANY INFORMATION AND DATA PROVIDED TO HIM IN THE CONTEXT OF THE DELIV-
ERY OF THE PRODUCT. THIS GENERAL NOTE SHALL BE GOVERNED AND CONSTRUED
ACCORDING TO GERMAN LAW.

Copyright
Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its con-
tents and communication thereof to others without express authorization are prohibited. Offenders will be
held liable for payment of damages. All rights created by patent grant or registration of a utility model or
design patent are reserved.

Copyright © 2015, Gemalto M2M GmbH, a Gemalto Company

Trademark Notice
Gemalto, the Gemalto logo, are trademarks and service marks of Gemalto and are registered in certain
countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corpora-
tion in the United States and/or other countries. All other registered trademarks or trademarks mentioned
in this document are property of their respective owners.

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Java User’s Guide

2

Page 2 of 107

Document Name: Java User’s Guide

Version: 07

Date: 2015-02-13

DocId: ehsx_java_usersguide_v07

Status Confidential / Released

Supported Products: Cinterion® EHS5, Cinterion® EHS6, Cinterion® EHS6-A,
Cinterion® EHS8

Java User’s Guide
 Content
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 3 of 107

Content

1 Preface ... 10
1.1 Document History .. 10

2 Overview .. 12
2.1 Related Documents ... 12
2.2 Terms and Abbreviations ... 12

3 Installation ... 14
3.1 System Requirements.. 14
3.2 Installation CD Content .. 14
3.3 Cinterion Mobility Toolkit Installation.. 15

3.3.1 Installation Prerequisites... 15
3.3.2 Installing CMTK... 16

3.4 CMTK Uninstall .. 20
3.5 Upgrades ... 20

4 Software Platform ... 21
4.1 Software Architecture... 21
4.2 Hardware Interfaces... 22

4.2.1 ASC0 - Serial Device .. 22
4.2.2 ASC1 - Serial Device .. 22
4.2.3 General Purpose I/O ... 22
4.2.4 ADC .. 22
4.2.5 PWM/DAC... 22
4.2.6 Digital Audio Interface (DAI) ... 22
4.2.7 I2C .. 23
4.2.8 SPI .. 23
4.2.9 USB... 23

4.3 Other Interfaces ... 23
4.3.1 IP Networking.. 23
4.3.2 Media .. 23
4.3.3 Others ... 23

4.4 Data Flow of a Java Application Running on the Module 24
4.5 Handling Interfaces and Data Service Resources ... 25

4.5.1 Module States ... 25
4.5.1.1 State 1: Default – Module after Power-Up........................... 25
4.5.1.2 State 2: Default - System.out is Configured 26
4.5.1.3 State 3: User Specific Java Application Started 26
4.5.1.4 State 4: Typical Deployment.. 26

5 Maintenance .. 27
5.1 IP Service... 27
5.2 Power Saving... 28
5.3 Airplane Mode.. 29

Java User’s Guide
 Content
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 4 of 107

5.4 Alarm.. 29
5.5 Shutdown ... 30

5.5.1 Automatic Shutdown ... 30
5.5.2 Manual Shutdown ... 30
5.5.3 Restart after Switch Off... 30
5.5.4 Watchdog.. 30

5.6 Special AT Command Set for Java Applications ... 31
5.6.1 Switching from Data Mode to Command Mode 31
5.6.2 Mode Indication after MIDlet Startup .. 31
5.6.3 Long Responses ... 31
5.6.4 Configuration of Serial Interface (ASC0, ASC1) 31
5.6.5 Java Commands ... 32

5.7 System Out .. 32
5.7.1 Serial interfaces .. 32
5.7.2 File .. 32

5.8 Restrictions .. 33
5.8.1 Flash File System ... 33
5.8.2 Memory ... 33
5.8.3 JAD File Size .. 33
5.8.4 AT Command API ... 33
5.8.5 FileConnection API ... 34

5.9 System Time .. 34
5.10 GPS Services... 34

6 MIDlets ... 35
6.1 MIDlet Documentation ... 35
6.2 MIDlet Life Cycle.. 35
6.3 Multiple MIDlets ... 36
6.4 Hello World MIDlet ... 37

7 File Transfer to Module... 38
7.1 Module Exchange Suite ... 38

7.1.1 Windows Based .. 38
7.1.2 Command Line Based .. 38

7.2 Over the Air Provisioning ... 38
7.3 Security Issues... 39

7.3.1 Module Exchange Suite .. 39
7.3.2 OTAP .. 39

8 Over The Air Provisioning (OTAP) .. 40
8.1 Introduction to OTAP ... 40
8.2 OTAP Overview ... 40
8.3 OTAP Parameters.. 41
8.4 Short Message Format .. 42
8.5 Java File Format .. 43

Java User’s Guide
 Content
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 5 of 107

8.6 Procedures... 45
8.6.1 Install/Update .. 45
8.6.2 Delete.. 46

8.7 Time Out Values and Result Codes... 47
8.8 Tips and Tricks for OTAP... 47
8.9 OTAP Tracer.. 48
8.10 Security .. 48
8.11 How To... 48

9 Compile and Run a Program without a Java IDE ... 50
9.1 Build Results .. 50
9.2 Compile.. 51
9.3 Run on the Module with Manual Start .. 51
9.4 Run on the Module with Autostart .. 52

9.4.1 Switch on Autostart ... 52
9.4.2 Switch off Autostart ... 52
9.4.3 Autostart Fail-Safe .. 53

10 Compile and Run a Program with a Java IDE... 54
10.1 Debug Environment ... 54

10.1.1 Data Flow of a Java Application in the Debug Environment 54
10.1.2 Emulator.. 55
10.1.3 Change Baud Rate ... 56

10.2 Using Eclipse for Java Development ... 58
10.2.1 Installing the "Mobile Tools for Java" Plugin 59
10.2.2 Integrating Cinterion WTK Manually ... 60
10.2.3 Import the provided WTK Samples ... 64
10.2.4 Creating a new MIDlet .. 66
10.2.5 Using Eclipse Workspaces ... 75

10.3 Using NetBeans for Java Development ... 76
10.3.1 Installing the "Mobility" Plugin ... 76
10.3.2 Integrating Cinterion WTK Manually ... 77
10.3.3 Opening the Provided WTK Samples ... 80
10.3.4 Creating a New MIDlet.. 81

11 Java Security ... 84
11.1 Secure Data Transfer... 85

11.1.1 HTTPS - Client Authentication .. 88
11.2 Execution Control... 89

11.2.1 Change to Secured Mode Concept... 90
11.2.2 Concept for the Signing the Java MIDlet .. 91

11.3 Application and Data Protection... 92
11.4 Structure and Description of the Java Security Commands 92

11.4.1 Structure of the Java Security Commands ... 92
11.4.2 Build Java Security Commands .. 95
11.4.3 Send Java Security Command to the Module..................................... 96

11.4.3.1 AT^SJMSEC Command Syntax .. 97

Java User’s Guide
 Content
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 6 of 107

11.5 Create a Java Security Environment Step by Step.. 100
11.5.1 Create SE Keystore .. 100
11.5.2 Create Digital Certificate File from SE Keystore 100
11.5.3 Create Certificate Request File from SE Keystore............................ 100
11.5.4 Create HTTPS SE Keystore ... 101
11.5.5 Create Digital Certificate File from HTTPS SE Keystore 101
11.5.6 Create Certificate Request File from HTTPS SE Keystore............... 101
11.5.7 Create ME Keystore.. 101
11.5.8 Create Java Security Commands ... 102
11.5.9 Sign a MIDlet .. 105

11.6 Attention... 105

12 Differences to EGS5/TC65i... 106

Java User’s Guide
 Tables
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 7 of 107

Tables

Table 1: A typical sequence of MIDlet execution ... 36
Table 2: Parameters and keywords ... 41
Table 3: List of commands... 93
Table 4: List of parameters .. 93
Table 5: Command structure.. 94

Java User’s Guide
 Figures
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 8 of 107

Figures

Figure 1: Overview .. 12
Figure 2: CMTK - InstallShield Wizard .. 16
Figure 3: Module Exchange Suite - InstallShield Wizard .. 17
Figure 4: IMP Debug Connection - InstallShield Wizard ... 18
Figure 5: Device software: Modem driver installation.. 18
Figure 6: Scan COM ports for available JAVA module ... 19
Figure 7: Scan for supported JAVA IDEs.. 19
Figure 8: Query to install Eclipse IDE as part of CMTK installation 20
Figure 9: System architecture ... 21
Figure 10: Data flow of a Java application running on the module.................................. 24
Figure 11: Module State 1... 25
Figure 12: Module State 2... 26
Figure 13: Module State 3... 26
Figure 14: Module State 4... 26
Figure 15: OTAP Overview ... 40
Figure 16: OTAP: Install/Update Information Flow (messages in brackets are optional) 45
Figure 17: OTAP: Delete Information Flow (messages in brackets are optional) 46
Figure 18: Data flow of a Java application in the debug environment............................. 54
Figure 19: Specify maximum port speed for modem device ... 56
Figure 20: Configure debug connection .. 57
Figure 21: Specify baud rate for debug connection... 57
Figure 22: Installing the "Mobile Tools for Java" plugin... 59
Figure 23: Integrating Cinterion WTK manually - Select preference............................... 60
Figure 24: Integrating Cinterion WTK manually - Browse ... 61
Figure 25: Integrating Cinterion WTK manually - Edit ... 62
Figure 26: Integrating Cinterion WTK manually - Library .. 63
Figure 27: Integrating Cinterion WTK manually - Add WTK documentation 63
Figure 28: Import the provided WTK Samples - Select ... 64
Figure 29: Import the provided WTK Samples - Copy... 65
Figure 30: Creating a new MIDlet - Select wizard ... 66
Figure 31: Creating a new MIDlet - Create project.. 67
Figure 32: Creating a new MIDlet - Configure project ... 68
Figure 33: Creating a new MIDlet - Project overview.. 69
Figure 34: Creating a new MIDlet - Configure compliance level 70
Figure 35: Add cwmlib to project ... 71
Figure 36: Include cwmlib into project package .. 72
Figure 37: Creating a new MIDlet - Program name... 73
Figure 38: Creating a new MIDlet - HelloWorld.java ... 74
Figure 39: Using Eclipse workspaces ... 75
Figure 40: Installing "Mobility" plugin... 76
Figure 41: Integrating Cinterion WTK manually - Select platform 77
Figure 42: Integrating Cinterion WTK manually - Select type ... 78
Figure 43: Integrating Cinterion WTK manually - Platform folder.................................... 79
Figure 44: Integrating Cinterion WTK manually - Finish.. 80
Figure 45: Creating a new MIDlet - Choose project .. 81
Figure 46: Creating a new MIDlet - Enter name and location ... 81
Figure 47: Creating a new MIDlet - Configure platform... 82
Figure 48: Creating a new MIDlet - Program name... 82
Figure 49: Creating a new MIDlet - HelloWorld.java ... 83

Java User’s Guide
 Figures
107

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 9 of 107

Figure 50: Mode 1 - Customer Root certificate does not exist .. 86
Figure 51: Mode 2 - Server certificate and certificate into module are identical.............. 87
Figure 52: Mode 2 - Server certificate and self signed root certificate in module form

a chain ... 88
Figure 53: Insert customer ME keystore ... 90
Figure 54: Prepare MIDlet for secured mode.. 91
Figure 55: Structure of Java Security commands ... 92
Figure 56: Build Java Security command.. 95

Java User’s Guide
1 Preface
11

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 10 of 107

1 Preface

This document covers the following IMP-NG Java products from Gemalto M2M:
1. Cinterion® EHS5 Module (as of Release 2)
2. Cinterion® EHS6 Module
3. Cinterion® EHS6-A Module
4. Cinterion® EHS8 Module

Where applicable differences between the products are noted in the particular chapters.
Throughout the document, all supported products are referred to as ME (Mobile Equipment).
For use in file, directory or path names, the string “<productname>” represents the actual
name of a product, for example EHS5. Screenshots are provided as examples and, unless oth-
erwise stated, apply to all supported products.

1.1 Document History

Preceding document "Java User’s Guide" Version 06
New document "Java User’s Guide" Version 07

Preceding document "Java User’s Guide" Version 05
New document "Java User’s Guide" Version 06

Preceding document "Java User’s Guide" Version 04
New document "Java User’s Guide" Version 05

Chapter What is new?

5.10 New section GPS Services.

Chapter What is new?

1 Added Cinterion® EHS8 and Cinterion® EHS6-A as supported products.

5.8.1 Updated note on file system performance.

10.1.2 Added note on DCD0, DTR0 and DSR0 lines having to be enabled for ODD.

11.5 Added sections 11.5.2, 11.5.3, 11.5.4, 11.5.5 and 11.5.6.
Revised parameter names used in Java security commands.

5.8.5 New section FileConnection API.

8.3 Added remarks on parameter configuration by AT command and via SMS.

8.4 Added note on OTAP being implemented as a special SM listener.

8.11 Added note on HTTP server setup (How to: Step 5).

Chapter What is new?

9.4.1 Added note on information written to standard output.

10.1 Added serial interfaces ASC0 and ASC1 as possible debug interfaces.

10.1.3 New section Change Baud Rate.

11.5.8 Revised section to include separate commands for Unsecured mode.

Java User’s Guide
1.1 Document History
11

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 11 of 107

Preceding document "Java User’s Guide" Version 03
New document "Java User’s Guide" Version 04

Preceding document "Java User’s Guide" Version 02
New document "Java User’s Guide" Version 03

Preceding document "Java User’s Guide" Version 01
New document "Java User’s Guide" Version 02

New document "Java User’s Guide" Version 01

Chapter What is new?

--- Added EHS6 as supported product.

5.2 New section Power Saving.

5.4 New section Alarm.

5.8.1 Added note regarding writing data to large files.

5.8.4 New section AT Command API.

9.4.3 Added further autostart fail-safe mechanism.

11.1 Added further cipher suites.

11.2 Added Java security commands accepted in unsecured and secured mode.

11.4 Revised list of Java security commands.

11.4.3.1 Revised syntax of AT^SJMSEC command.

12 Added note that in contrast to to previous Gemalto M2M Java products the AT^SJNET
parameter <timeout> has been changed in its meaning.

Chapter What is new?

3 Revised chapter to include support for Eclipse IDE.

4.3.2 Added note on supported playTone method and tone sequence player.

5.7.3 Removed section "UDP".

5.8.1 Revised note on maximum number of directories and files for flash file system.

6.3 New section Multiple MIDlets.

9.4.3 New section Autostart Fail-Safe.

10 Revised chapter to include support for Eclipse IDE.

12 New section Differences to EGS5/TC65i.

--- Removed announced sections until appropriate content is available.

Chapter What is new?

11 New section Java Security.

Chapter What is new?

-- Initial document setup.

Java User’s Guide
2 Overview
13

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 12 of 107

2 Overview

Java technology and several peripheral interfaces on the module allow you to easily integrate
your application.

This document explains how to work with the ME, the installation CD and the tools provided on
the installation CD.

Figure 1: Overview

2.1 Related Documents

List of documents referenced throughout this manual:
[1] AT Command Set of your Gemalto M2M product
[2] Hardware Interface Description of your Gemalto M2M product
[3] Java doc \wtk\doc\html\index.html
[4] IMP-NG, JSR228, Standard

2.2 Terms and Abbreviations

Abbreviation Description

API Application Program Interface

ASC Asynchronous Serial Controller

CLDC Connected Limited Device Configuration

CMTK Cinterion Mobility Toolkit

CSD Circuit-Switched Data

DAI Digital Audio Interface

Java User’s Guide
2.2 Terms and Abbreviations
13

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 13 of 107

DCD Data Carrier Detect

DSR Data Set Ready

FFS Flash File System

GPIO General Purpose I/O

GPRS General Packet Radio Service

HTTP Hypertext Transfer Protocol

I/O Input/Output

IDE Integrated Development Environment

IMC Inter-MIDlet Communication (com.sun.midp.io.pipe.PipeConnection)

IMP-NG Information Module Profile - Next Generation

IP Internet Protocol

Java ME™ Java Micro Edition (also known as J2ME)

Java SE™ Java Standard Edition

JAD Java Application Description

JAR Java Archive

JDK Java Development Kit

JSR Java Specification Request

JRC Java Remote Control

JVM Java Virtual Machine

LED Light Emitting Diode

ME Mobile Equipment

MES Module Exchange Suite

MIDP Mobile Information Device Protocol

ODD On Device Debugging

OTA Over The Air

OTAP Over The Air Provisioning of Java Applications

PDP Packet Data Protocol

PDU Protocol Data Unit

SDK Software Development Kit

SMS Short Message Service

TCP Transfer Control Protocol

TLS Transport Layer Security, formerly SSL (Secure Socket Layer)

URC Unsolicited Result Code

URL Universal Resource Locator

VBS Visual Basic Script

WTK Wireless Toolkit

Abbreviation Description

Java User’s Guide
3 Installation
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 14 of 107

3 Installation

3.1 System Requirements

The Cinterion Mobility Toolkit (CMTK) requires that you have:
• Windows XP, Windows Vista or Windows 7 installed
• 110 Mbytes free disk space for the CMTK (without JDK and IDE)
• Administration privileges
• A recent Java SE Development Kit. To install the JDK on CD, follow the instructions in Sec-

tion 3.3.1.

If a Java IDE such as NetBeans (as of 6.7 or higher) or Eclipse (as of 4.2.0 - Juno or higher) is
installed, the CMTK environment can be integrated into it during installation of the CMTK. To
install one of the IDEs follow the installation instructions in Section 3.3.1.

If you wish to access the module via USB ensure that the USB cable is plugged between the
module’s USB interface and the PC.

3.2 Installation CD Content

The Cinterion Mobility Toolkit Installation CD includes:
• Wireless Toolkit. The WTK is the directory where all the necessary components for product

specific Java application creation and debugging are stored. The WTK version is stored in
a text file under "Program Files\Cinterion\CMTK\<product name>\WTK\VersionWTK.txt".
The WTK is distributed on the CD under "program files\Cinterion\CMTK\EHS5\WTK" with
- bin

Various tools
- doc

HTML documentation of Java API
- lib

Libraries containing the WTK classes
- resources

Archive containing part of the Java API
- runtimes, toolkit-lib

Runtime environment required for using the WTK
• WTK samples are distributed on the CD under "All Users\Cinterion\EHS5 WTK Examples"
• Module Exchange Suite (MES). MES setup is distributed on CD under "Installer\MES-

Setup.exe". MES provides tools to access the Flash file system on the module from the
development environment over a serial interface. The MES may be installed separately, but
can also be installed as part of CMTK - see Section 3.3.

• IMP Debug Connection. The setup is found under "Installer\IMPDbgConnectionSetup.exe".
The setup installs an IDE debug modem for on device debugging (see Chapter 10). The
IMP Debug Connection may be installed separately, but can also be installed as part of
CMTK - see Section 3.3.

• Java SDK
- Recent JDK for using the WTK

• NetBeans IDE 7.2
- netbeans-7.2-ml-javase-windows.exe

• Eclipse Juno SR2 (v4.2.0)
- eclipse-mobile-juno-SR2-win32-x86.zip

Java User’s Guide
3.3 Cinterion Mobility Toolkit Installation
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 15 of 107

• Eclipse Juno SR2 (64-bit) (v4.2.0)
- eclipse-mobile-juno-SR2-win32-x86_64.zip

• Updated MTJ-Plugin for Eclipse Juno
- org.eclipse.mtj.update-site.zip

• Documentation is distributed on the CD under "Program Files\Cinterion\CMTK\EHS5 Doc-
umentation" and includes AT Command Set as well as this Java Users Guide.

3.3 Cinterion Mobility Toolkit Installation

The CMTK is distributed on CD. The installation program automatically installs the necessary
components and IDE integrations. The software can be uninstalled and updated with the install
program.

This section covers the installation and removal of the CMTK including the installation of the
prerequisite JDK and supported IDEs.

3.3.1 Installation Prerequisites

Before the CMTK is installed from CD a standard Java Development Kit (JDK) should be in-
stalled
• A recent Java SE Development Kit is distributed as part of the installation CD under "Con-

tribution\". To install the JDK please call the contribution file and follow the instructions on
the screen. If there is no appropriate JDK installed, the installation of the provided JDK will
be offered automatically during the CMTK installation process. Once the JDK has been
installed, the environment variable “path” can be altered to comfortably use the JDK tools
without IDE (this is not necessary for using the Cinterion CMTK):
- Open the Control Panel:

Open System.
Click on Advanced.
Click on the Environment Variables button.
Choose path from the list of system variables.
Append the path for the bin directory of the newly installed SDK to the list of directories
for the path variable.

Apart from the JDK installation it is recommended to install a Java Development Environment
(IDE):
• The Eclipse as well as the NetBeans IDE are distributed as part of the installation CD under

"Contribution\eclipse-mobile-juno-SR2-win32.zip" resp. "Contribution\eclipse-mobile-juno-
SR2-win32_64.zip" (for 64-bit systems with only a 64 bit version of the JDK installed) or
"Contribution\netbeans-7.2-ml-javase-windows.exe". To install NetBeans call the contribu-
tion setup file. To install Eclipse unzip the appropriate contribution archive to the desired
destination directory. An Eclipse IDE may also be installed as part of the CMTK installation
process described in Section 3.3.2.
Note that the Eclipse IDE provided on the installation CD is a specially adapted "Eclipse for
Mobile Developers package" with a pre-integrated MTJ plugin that is necessary for J2ME
development. If employing any other Eclipse IDE variant or the NetBeans IDE also provided
on the installation CD, it is therefore required to install additional plugins containing mobile
resp. mobility tools. Please refer to Chapter 10 for more information on how to install these
plugins for Eclipse and NetBeans.

Java User’s Guide
3.3 Cinterion Mobility Toolkit Installation
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 16 of 107

3.3.2 Installing CMTK

Before you start the installation please make sure all applications - especially possible IDEs -
are closed:

1. Insert the installation CD and start Setup.exe. When the dialog box appears press the Next
button to start the CMTK installation.

Figure 2: CMTK - InstallShield Wizard

2. Read the CMTK license agreement. If you accept the agreement, press "Yes" to continue
with the installation.

3. Read the information about the installation and the use of the CMTK. Press "Next" to con-
tinue.

Java User’s Guide
3.3 Cinterion Mobility Toolkit Installation
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 17 of 107

4. Install the Module Exchange Suite (MES) as part of the CMTK installation. MES provides
tools to access the Flash file system on the module from the development environment over
a serial interface. File transfers between PC and module are greatly facilitated by this suite.
MES is installed to "Program Files\Cinterion\Module Exchange Suite".

Figure 3: Module Exchange Suite - InstallShield Wizard

5. Read the MES license agreement. If you accept the agreement, press "Yes" to continue
with the installation.

6. Click Finish to conclude the MES installation as part of the CMTK installation (a computer
restart is required at some later point to complete the MES installation).

Java User’s Guide
3.3 Cinterion Mobility Toolkit Installation
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 18 of 107

7. Install the IMP debug connection as part of the CMTK installation.

Figure 4: IMP Debug Connection - InstallShield Wizard

8. Continue with installation by installing the corresponding Gemalto M2M device software,
i.e., modem driver.

Figure 5: Device software: Modem driver installation

Note that this dialog appears only as of Windows Vista and only if the checkbox "Always trust
software from "Gemalto M2M GmbH" was not selected during previous Gemalto M2M device
software installations. Otherwise the necessary drivers are installed automatically.

Java User’s Guide
3.3 Cinterion Mobility Toolkit Installation
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 19 of 107

9. Scan COM ports for available Java module. The scan may be skipped and can be repeated
later as part of a repair installation. This is done by selecting the "Gemalto IMP Debug Con-
nection for EHSx" from Control Panel and clicking "Change".

Figure 6: Scan COM ports for available JAVA module

10. Click Finish to complete the IMP Debug Connection installation.
11. Scan system for supported Java IDEs to automatically integrate the WTK into. Please

ensure that none of the possibly installed Java IDEs is running before the scan is started.
The scan may be skipped and can be repeated later as part of a repair installation. This is
done by selecting the "Gemalto EHSx Software Development Kit" from Control Panel and
clicking "Change".

Figure 7: Scan for supported JAVA IDEs

Java User’s Guide
3.4 CMTK Uninstall
20

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 20 of 107

12. If the above scan did not deliver any supported Java IDE, it is possible to install the Eclipse
IDE provided on the installation CD.

Figure 8: Query to install Eclipse IDE as part of CMTK installation

13. Click Finish to complete the CMTK installation.

3.4 CMTK Uninstall

The CMTK install package comes with an uninstall facility. The entire CMTK or parts of the
package can be removed. To start the uninstall facility, open the Control Panel, select Add/Re-
move Programs, select the desired CMTK, e.g. "Gemalto EHSx Software Development Kit"
and follow the instructions. The standard modem and dial-up network connection (DUN) are
uninstalled automatically.

The Module Exchange Suite (MES) is not uninstalled automatically with the CMTK. To uninstall
MES as well, please run the MES uninstall facility. To run the uninstall program, open the Con-
trol Panel, select Add/Remove Programs, select "Gemalto Module Exchange Suite (MES)" and
follow the instructions. MES might still be used by other CMTK versions and should in this case
not be uninstalled.

Please keep in mind that standard modem (or USB modem) and dial-up network connection
are required for a proper working of the CMTK on-device debugging.

3.5 Upgrades

The CMTK can be modified, repaired or removed by running the setup program on the Instal-
lation CD.

Java User’s Guide
4 Software Platform
26

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 21 of 107

4 Software Platform

In this chapter, we discuss the software architecture of the CMTK and the interfaces to it.

4.1 Software Architecture

With the CMTK it is possible to develop a Java application on a PC and to execute it on the
Java enabled module. The application is then loaded onto the module. The platform comprises:
• Based on Oracle Java METM Embedded 3.2 (http://www.oracle.com/us/technologies/java/

embedded/micro-edition/). Platform is compliant to CLDC 1.1 HI (JSR139) and IMP-NG
(JSR228) Java standards and is capable of running multiple MIDlets in parallel with inter-
MIDlet communication.

• Additional Java standard APIs:
- JSR75 (FileConnection)
- JSR177 SATSA (CRYPTO)
- JSR179 LOCATION (can only be used with EHS8)
- JSR280 (XML)

• Additional Java proprietary APIs:
- AT Command API
- Bearer Control API
- Watchdog API

• Additional accessible periphery for Java applications
- I/O pins usable for example as: Output: status LEDs or Input: Emergency Button
- I2C interface, SPI interface
- Digital Analog Converter (DAC),
- Analog Digital Converters (ADC)
- Serial interfaces (RS-232 API): All of the modules serial interfaces (ASC0, ASC1, USB

modem as well as USB ports) can be used, for example, with an external meter.
For detailed information see Section 4.2.

• Memory space for Java programs:
Flash File System: around 10 MB.
RAM: around 10MB for Java user application. Plus additional RAM for Gemalto application
("JRC") and Just-in-Time Compiler execution optimization.
Application code and data share the space in the flash file system and in RAM.

Figure 9: System architecture

IMP-NG
(TCP, UDP, HTTP(S),

Comm, Media)

CLDC 1.1 HI

Gemalto APIs
(AT Command, GPIO, I2C, SPI, ADC,

DAC, Bearer Control, Watchdog)

JSR280
(XML)

JSR177
SATSA

(CRYPTO)

JSR75
(File

access)

Gemalto Application

Third Party Application
(optional)

Java User Application
(optional)

Java API

IMC IMC

IMC

JSR179
LOCATION
(EHS8 only)

http://www.oracle.com/us/technologies/java/embedded/micro-edition/
http://www.oracle.com/us/technologies/java/embedded/micro-edition/

Java User’s Guide
4.2 Hardware Interfaces
26

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 22 of 107

4.2 Hardware Interfaces

Not all hardware interfaces can be used at the same time. Some of them share physical pins
and can therefore only be used alternatively. The pins will have to be configured by AT com-
mand. After doing so, the module will automatically start up with this configuration.

Basically, GPIO pins can alternatively be used as SPI, PWM/DAC, ASC1 or DAI interface. For
details see [1]. USB, I2C and ADC interfaces do not share pins.

4.2.1 ASC0 - Serial Device

ASC0, an Asynchronous Serial Controller, is a 9-wire serial interface. It is described in [2].
When not used by a Java application, the module can be controlled by sending AT commands
over ASC0. Furthermore, ASC0 is designed for transferring files from the development PC to
the module. When a Java application is started, ASC0 can be used as an RS-232 port or Sys-
tem.out. Refer to [3] for details.

4.2.2 ASC1 - Serial Device

ASC1 is the second serial interface on the module. This is a 4-pin interface (RX, TX, RTS,
CTS). It can be used as a second AT interface or by a running Java application as RS-232 port
or/and System.out.

4.2.3 General Purpose I/O

There are a number of I/O pins that can be configured for general purpose I/O (GPIO). One pin
can also be configured as a pulse counter. All lines can be accessed under Java by a Java API.
See [1] and [2] for information about usage and startup behavior.

4.2.4 ADC

Accessible by a Java API. See [1] and [2] for details.

4.2.5 PWM/DAC

Accessible by a Java API. See [1] and [2] for details.

4.2.6 Digital Audio Interface (DAI)

The DAI is not directly controlled by Java. It can be configured by AT command and then serves
as an alternative audio interface to analog audio. Refer to [1] and [2] for more information.

Java User’s Guide
4.3 Other Interfaces
26

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 23 of 107

4.2.7 I2C

Accessible by a Java API. See [1] and [2] for details.

4.2.8 SPI

Accessible by a Java API. See [1] and [2] for details.

4.2.9 USB

Accessed by Java RS-232 API as a serial emulation. The USB interface comprises an USB
modem and available USB ports. The available ports provide an AT command interface to the
module (i.e., ports 3, 4 and 5). USB modem and ports may be employed as regular USB inter-
faces, including usage as System.out and for on-device debugging (ODD) during the applica-
tion development phase.

4.3 Other Interfaces

4.3.1 IP Networking

Because the used network connection (GPRS) is fully transparent to the Java interface, the
GPRS parameters must be defined separately either by the AT command AT^SJNET [1] or by
parameters given to the Connector.open() method, see [3].

4.3.2 Media

The playTone method and the tone sequence player are supported.

4.3.3 Others

Neither the PushRegistry interfaces and mechanisms nor any URL schemes for the Platform-
Request method are supported. See [3].

Java User’s Guide
4.4 Data Flow of a Java Application Running on the Module
26

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 24 of 107

4.4 Data Flow of a Java Application Running on the Module

Figure 10: Data flow of a Java application running on the module.

The diagram shows the data flow of a Java application running on the module. The data flow
of a Java application running in the debug environment can be found in Figure 18.
The compiled Java applications are stored as JAR files in the Flash File System of the module.
When the application is started, the JVM interprets the JAR file and calls the interfaces to the
module environment.

The module environment consists of the:
• Flash File System: available memory for Java applications
• TCP/IP: module internal TCP/IP stack
• GPIO: general purpose I/O
• ASC0: Asynchronous serial interface 0
• ASC1: Asynchronous serial interface 1
• I2C: I2C Bus interface
• SPI: Serial Peripheral Interface
• DAC: digital analog converter
• ADC: analog digital converter
• AT parser: accessible AT parser

The Java environment on the module consists of the:
• JVM: Java Virtual Machine
• AT command API: Java API to AT parser
• File API: Java API to Flash File System
• IMP-NG: Java API to TCP/IP and ASC0/1
• GPIO API: Java API to GPIO pins and pulse counter
• I2C/SPI API: Java API to access I2C/SPI Bus

JVM
Flash File
System

File I/O API

IMP-NG

AT Command
API

ASC0/ASC1/
USB

GPIO

AT Parser

TCP/IP

system.out ASC0/1, USB

I2C/SPI DAC/ADC

GPIO API

Java User’s Guide
4.5 Handling Interfaces and Data Service Resources
26

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 25 of 107

• ADC/DAC API: Java API to access ADC and DAC
• Watchdog API: Java API to HW watchdog
• Bearer Control API: Java API for bearer state information and hang-up.
• XML API: XML parsing and composition services
• Crypto API: encryption services

4.5 Handling Interfaces and Data Service Resources

To develop Java applications the developer must know which resources, data services and
hardware access are available.
• There are multiple AT parsers available
• There is hardware access to

- two serial interfaces: ASC1 and ASC0 (both fully accessible).
- general purpose I/O. To configure the hardware access, please refer to [1] and [2].
- I2C/SPI
- All restrictions of combinations are described in Section 4.5.1

• A Java application has:
- instances of the AT command class, each of which would, in turn, be attached to one of

the AT parsers.
- two instances of access to a serial interface, ASC0 and ASC1, through the CommCon-

nection API. Access to the control lines of these interfaces through CommConnection-
ControlLines.

- System.out over any serial interface or into the file system

4.5.1 Module States

In contrast to previous Gemalto M2M Java products (e.g., Cinterion® TC65i) where the Java
runtime environment was only started when the Java MIDlet was started (by AT^SJRA or au-
tostart) the Java runtime environment now always starts at power-up of the module. But also
in contrast to previous products, Java does not immediately take control of all interfaces, i.e.,
the module is accessible via AT command over all serial interfaces even when Java is running.
Interface resources are only claimed when a Java application opens the interface or Java Sys-
tem.out is configured to this interface.

4.5.1.1 State 1: Default – Module after Power-Up

This is the default state.

Figure 11: Module State 1

ASC0

Java Maintenance
Application

(“JRC“)

Other HW interfaces
E.g. GPIO, I2C, ...

Java runtime environment

AT parser

USBx

AT parser

ASC1

AT parser

Java User’s Guide
4.5 Handling Interfaces and Data Service Resources
26

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 26 of 107

4.5.1.2 State 2: Default - System.out is Configured

This is the default state with a System.out interface configured to ASC1, i.e. one of the at com-
mand interfaces is no longer available.

Figure 12: Module State 2

4.5.1.3 State 3: User Specific Java Application Started

A user specific Java application has been installed and started, either with AT^SJRA,
AT^SJAM and/or autostart. The application did not open any of the depicted interfaces.

Figure 13: Module State 3

4.5.1.4 State 4: Typical Deployment

A Java user application has been installed and started. The application opened the ASC0 in-
terface, an AT parser and an additional HW interface.

Figure 14: Module State 4

ASC0

Java Maintenance
Application

(“JRC“)

Other HW interfaces
E.g. GPIO, I2C, ...

Java runtime environment

AT parser

USBx

AT parser

ASC1

Java User
Application

ASC0

Java Maintenance
Application

(“JRC“)

Other HW interfaces
E.g. GPIO, I2C, ...

Java runtime environment

AT parser

USBx

AT parser

ASC1

Java User
Application

ASC0

Java Maintenance
Application

(“JRC“)

Other HW interfaces
E.g. GPIO, I2C, ...

Java runtime environment

USBx

AT parser

ASC1

AT parser

Java User’s Guide
5 Maintenance
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 27 of 107

5 Maintenance

The basic maintenance features of the ME are described below. Explicit details of these func-
tions and modes can be found in [1] and [2].

5.1 IP Service

Java supports more than one PDP context via several connections. A connection is defined by
means of:
• Optional additional parameters for the Connector.Open() method of the used connection
• The default parameter set configured with AT^SJNET

The unique connection identifier is always its name (APN).

Every access to a network resource tries to open/use a PDP context (with or without PDP con-
text parameters) and the following steps are executed in the given order:

1. Debugger default connection is checked: If the debugger connection is set to default (via
AT^SCFG), this connection is used.

2. In case a PDP context with an identical name (APN) is already open, the established con-
nection (with its additional parameters) is used. It is not possible to run different connections
with the same APN name.

3. If an APN is set, this APN is used. Should this not be possible because too many contexts
are already open, connection setup will fail.

4. If no APN is set, it is checked whether a default context (see AT^SJNET for details on how
to set dialup network access parameters) is configured and open. The context is used if
already open or opened if configured and not yet open.

5. If no APN is set and no default context is available (via AT^SJNET), find any open context
and use it.

6. If no APN is set, no default context is available (via AT^SJNET) and no open context is
available as well, then try to open a new context with empty parameters.

Apart from the standard Java IP networking interfaces (UDPDatagramConnection, SocketCon-
nection, ...) the module also supports a set of Internet Services controlled by AT command.
There are some correlations between the Java and the AT command IP Services.

• As for the Java connector, IP services also use contexts identified by their APN, with the
same rules as described above to open a context. Any possible sharing of contexts is pos-
sible (Java uses contexts from IP services and vice versa).

• The connection profile is deactivated once all applications are finished: Java may setup its
networking idle time for every connection. For the Internet Services an inactivity timeout
referred to as parameter <inactTO> is available (configurable by AT^SICS and AT^SCFG).
So that means that Java networking and AT Internet Services can be used in parallel but
care has to be taken about configuring and activation of the connection profile. It is recom-
mended to set the parameters to the same values as the Java networking parameters. This
way it does not matter if a connection is activated by the Internet Services or Java.

Java User’s Guide
5.2 Power Saving
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 28 of 107

There are some aspects that have to be kept in mind for all IP Services (Java and AT com-
mand):

• When an open TCP connection is disrupted (e.g. the other side dies/is switched off) it takes
a complete re-transmission timeout during which re-transmissions are sent, until the situa-
tion is detected as an error (in Java an exception is thrown). The re-transmission timeout
may set via IP service commands (for IP services) or the netExtension class for regular
Java network access.

• The number of IP services used in parallel should be kept low. An active IP service uses up
resources and may deteriorate the overall performance.

• If a user rapidly closes and opens TCP/IP connections (e.g. SocketConnection, HTTPCon-
nection), a ConnectionNotFoundException reading "No buffer space available" may be
thrown, explaining that all TCP/IP socket resources are exhausted. In the worst case, open-
ing further TCP/IP connections is locked for up to 60 seconds.

• For information about the bearer state, use the specific IP service command AT^SICI and,
in addition, the general network commands AT+COPS and/or AT+CREG, or the Bearer-
Control / BearerControlListener Java classes.

• When trying to start the bearer when it is still in the process of shutting down, e.g. right after
a "network idle timeout" an IOException is thrown. Either use a delay or wait for bearer state
to actually say "down". Use the BearerControl class. This class provides bearer state infor-
mation and methods to hang up.

5.2 Power Saving

The module supports several power saving modes which can be configured by the AT com-
mand AT^SPOW [1]. Power saving affects the Java application in two ways. First, it limits ac-
cess to the serial interface (RS-232-API) and the GPIO pins. Second, power saving efficiency
is directly influenced by the way a Java application is programmed.

Java hardware access limitations:
• In non cyclic power saving mode (AT^SPOW=0) the serial interface cannot be accessed.

In cyclic power saving mode (AT^SPOW=2) the serial interface can be used with hardware
flow control (CTS/RTS).

• In all power saving modes the GPIO polling frequency is reduced when the module goes to
sleep so that only signal changes that are less than 0.2Hz can be detected properly. Fur-
thermore, the signal must be constant for at least 2.7s to detect any changes. For further
details see AT^SCPOL in [1] or refer to [2].

Java power saving efficiency:
• As long as any Java thread is active, power consumption cannot be reduced, regardless

whether any power saving mode has been activated or not. A Java application designed to
be power efficient should not have any unnecessarily active threads (e.g. no busy loops).
Threads waiting in a blocking method (e.g. read) do not prevent power saving.

• When using networking functionality the module also saves power while a PDP context is
activated but without ongoing traffic. To further improve power saving close all connectors
and hang-up the bearer manually.

Java User’s Guide
5.3 Airplane Mode
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 29 of 107

5.3 Airplane Mode

While the module is in airplane mode the RF interface is switched off and therefore only a lim-
ited set of AT commands is available. The mode can be entered or left using the appropriate
AT+CFUN command. A Java application must be able to handle this mode.

Since the RF interface is switched off all classes related to networking connections, e.g. Sock-
etConnection, UDPDatagramConnection, SocketServerConnection, HTTPConnection, will
throw an exception when accessed.

5.4 Alarm

The ALARM can be set with the AT+CALA command. Please refer to the AT Command Set [1]
and Hardware Interface Description [2] for more information. It is possible to set an alarm,
switch off the module with AT^SMSO, and have the module restart at the time set with AT+CA-
LA. When the alarm triggers the module restarts and with it any Java application.

Java User’s Guide
5.5 Shutdown
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 30 of 107

5.5 Shutdown

If an unexpected shutdown occurs, data scheduled to be written will get lost due to a buffered
write access to the flash file system. The best and safest approach to powering down the mod-
ule is to issue the AT^SMSO command. This procedure lets the module log off from the network
and allows the software to enter a secure state and save all data. Further details can be found
in [2].

5.5.1 Automatic Shutdown

The ME is switched off automatically in different situations:
• under- or overtemperature

Appropriate warning messages transmitted by the ME to the host application are implemented
as URCs. To activate the URCs for temperature conditions use the AT^SCTM command.

For further detail refer to the command AT^SCTM described in the AT Command Set [1]. In
addition, a description of the shutdown procedure can be found in [2].

5.5.2 Manual Shutdown

The module can be switched off manually with the AT command, AT^SMSO. In this case the
MIDlet’s destroyApp() method is called and the application has 10s time to clean up and call
the notifyDestroyed() method. After the 10s the VM is shut down.

5.5.3 Restart after Switch Off

When the module is switched off without setting an alarm time (see the AT Command Set [1]),
e.g. after a power failure, external hardware must restart the module by means of the Ignition
line (ON, AUTO_ON). The Hardware Interface Description [2] explains how to power up the
module using these lines.

5.5.4 Watchdog

The Watchdog class allows to access the HW watchdog of the system from application level.
Depending on the setting (AT^SCFG) the userware watchdog can do nothing, switch-off or re-
boot the system.

Java User’s Guide
5.6 Special AT Command Set for Java Applications
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 31 of 107

5.6 Special AT Command Set for Java Applications

For the full AT command set refer to [1]. There are differences in the behaviour between AT
commands issued from a Java application and AT commands issued over a serial interface.

5.6.1 Switching from Data Mode to Command Mode

Cancellation of the data flow with “+++” is not available in Java applications, see [1] for details.
To break the data flow use breakConnection(). For details refer to [3].

5.6.2 Mode Indication after MIDlet Startup

After starting a module without autobauding on, the startup state is indicated over the serial in-
terface. Similarly, after MIDlet startup the module sends its startup state (^SYSSTART, etc.)
to the MIDlet. This is done via a URC to the AT Command API instance which executes the
very first AT Command from within Java. To read this URC it is necessary to register a listener
(see [3]) on this AT Command API instance before passing the first AT Command.

5.6.3 Long Responses

The AT Command API can handle responses of AT commands up to a length of 1024 bytes.
Some AT commands have responses longer than 1024 bytes, for these responses the Java
application will receive an Exception.

Existing workarounds:
• Instead of listing the whole phone book, read the entries one by one
• Instead of listing the entire short message memory, again list message after message
• Similarly, read the provider list piecewise

5.6.4 Configuration of Serial Interface (ASC0, ASC1)

While a Java application is running on the module, only the AT Command API is able to handle
AT commands. All AT commands referring to a physical serial interface are pointless on the AT
Command API and should therefore not be used. This includes the commands:
• AT+IPR (sets a fixed local bit rate)
• AT\Q3 (sets type of flow control)

If Java is running, the firmware will ignore any settings from these commands. Responses to
the read, write or test commands will be invalid or deliver „ERROR“.

Note: When a Java application is running, all settings of the serial interface are done with the
class CommConnection. This is fully independent of any AT commands relating to a serial in-
terface. However, the following restrictions apply in configuring the serial interface: Baudrate:
Only 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800
and 921600 are supported; Stopbits: "1" and "2"is supported; Parity: Parity: "even", "odd",
"none" are all supported. Character framing: 7bit and 8bit are both supported.

Java User’s Guide
5.7 System Out
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 32 of 107

5.6.5 Java Commands

There is a small set of special Java AT commands:
• AT^SJRA, start a Java application
• AT^SJAM, start/stop, install/remove Java applications
• AT^SJNET, configuration of Java networking connections
• AT^SJOTAP, start and configuration of over the air provisioning
• AT^SJMSEC, security configuration (not yet available)

Refer to the AT command Set [1].

5.7 System Out

Any output printed to the System.out stream by a Java application can be redirected to one of
the serial interfaces, a file, a "NULL" device (i.e. the output will be discarded) or a UDP socket
for using the debugger from an IDE. The configuration can be done at any time using the AT
command AT^SCFG (see [1] for details) and is non-volatile.

5.7.1 Serial interfaces

System.out can be written to any of the serial interfaces ASC0, ASC1 or USB. If System.out is
redirected to one of the interfaces used for the Java CommConnection, the interface will be
shared between System.out and the CommConnection. This will result in mixed output, if data
is written to the CommConnections OutputStream and something is printed via System.out at
the same time.

Using System.out and CommConnection on the same serial interface may be done if a device
connected to the serial port is only transmitting data to the module. It is recommended to en-
sure already in the HW design that output from the module cannot be transferred to a connect-
ed device.

5.7.2 File

The System.out print can be redirected into log files within the module’s flash file system. The
output will be written alternatingly into two files which can be concatenated afterwards to have
a single log file.

Writing the output to a file will slow down the virtual machine. To reduce the impact of logging
the output may be written first to a buffer before it is written to the file (buffered mode). The buff-
ered output is written either if the buffer is filled or after 200 ms. If the buffer is not used (secure
mode) the output is written directly to the file. Because excessive writing to the module’s flash
file system decreases the life time of the flash memory, we recommend using the System.out
to file redirection only during development phases.

Java User’s Guide
5.8 Restrictions
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 33 of 107

5.8 Restrictions

5.8.1 Flash File System

The maximum length of a complete path name, including the path and the filename, is limited
by the Flash file system on the module to 127 characters. It is recommended that names of
classes and files be distinguished by more than case sensitivity.

The maximum number of directories is limited to 100, the maximum number of files is limited
to 1100. Please note that the actual amount of files and directories may be lower, because
some of them are used internally by the java application manager.

Avoid using any blank in the names of JAR or JAD files. Otherwise the file explorer might not
recognize the names. If the OTAP server adds a blank into the filenames, problems with OTAP
will occur.

Please note that the file system will have major performance drops, if small data blocks are ap-
pended to large files (>1MByte), or if there are already a lot of directories and files on the file
system, or if the file system is nearly full. It is recommended to write blocks of at least 4 KByte
to large files, and to avoid having more than 300 directory and file entities on the file system.
Please also note that writing continuously large data blocks to the file system can slow down
execution of all other java tasks. To avoid this a Thread.sleep(100) should be added to a writ-
ing loop.

5.8.2 Memory

The CLDC 1.1 HI features a just-in-time compiler. This means that parts of the Java byte code
which are frequently executed are translated into machine code to improve efficiency. This fea-
ture uses up RAM space. There is always a trade off between code translation to speed up ex-
ecution and RAM space available for the application.

5.8.3 JAD File Size

The Java Application Descriptor (JAD) File can be used to pass configuration data to the MID-
let. JAD file sizes of up to 30 KByte are allowed.

5.8.4 AT Command API

Before using a new AT Command instance it should be reset (AT&F). Because of the employed
multi-MIDlet architecture another MIDlet may have used this instance before, but with a differ-
ent setup, e.g. echo.

Java User’s Guide
5.9 System Time
34

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 34 of 107

5.8.5 FileConnection API

Basically, the underlying platform has no limitations regarding simultaneous multi-access file
operations for a single file on the file system. The Java virtual machine adheres to this platform
architecture and leaves the control of the resource conflict management mechanisms to an up-
per application layer.

This means that a Java application can open multiple file connections to simultaneously access
a single file on the file system by using the JRS75 FileConenction API. The application layer is
in this case responsible for the control of the resource conflict management, e.g., to prevent
multiple connections to access a single file, thus ensuring the correct application logic.

5.9 System Time

The return value System.currentTimeMillis() is derived from the systems real time clock (RTC).
Therefore setting the RTC with the AT+CCLK AT command also configures the Java time. The
Calendar class also uses System.currentTimeMillis() to set the initial date.

5.10 GPS Services

GPS services can only be used with EHS8.

The GPS antenna's working mode can be set to either passive or active antenna mode. By de-
fault, passive antenna mode is enabled, i.e., usage of a passive GPS antenna:
• Active antenna mode:

- Configure GPIO12 to activate the active antenna power supply line ANT_GPS_PWR by
executing AT^SCFG="Gpio/mode/GPSANT","std" , then reboot module for the activation
to take effect. For more information on GPSANT please refer to [1].

- The active antenna mode can then be specified by executing AT^SGPSC="Mode/
Antenna","1", and then rebooting the module for the mode to take effect.

• Passive antenna mode:
- The passive antenna mode can be configured again by entering AT^SGPSC="Mode/

Antenna","0", and then rebooting the module for the default mode to take effect.

A-GPS functionality is available for EHS8. Before using it however, the SUPL server informa-
tion and GPRS access must be configured:
• AT^SGPSC="Assist/Address" should be used to configure the SUPL server. For details on

this AT command please refer to [1].
• AT^SJNET should be used to configure GPRS access. For details on this AT command

please refer to [1].

Java User’s Guide
6 MIDlets
37

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 35 of 107

6 MIDlets

Java applications in Java METM are called MIDlets. The MIDlet code structure is very similar to
applet code. There is no main method and MIDlets always extend the MIDlet class. The MIDlet
class in the MIDlet package provides methods to manage a MIDlet's life cycle.

6.1 MIDlet Documentation

IMP-NG and MIDlet documentation can be found in the html document directory of the wtk,
…\Cinterion\CMTK\<productname>\wtk\doc\index.html

6.2 MIDlet Life Cycle

The MIDlet life cycle defines the protocol between a MIDlet and its environment through a sim-
ple well-defined state machine, a concise definition of the MIDlet’s states and APIs to signal
changes between the states. A MIDlet has three valid states:
• Paused – The MIDlet is initialised and is quiescent. It should not be holding or using any

shared resources.
• Active – The MIDlet is functioning normally.
• Destroyed – The MIDlet has released all of its resources and terminated. This state is only

entered once.

State changes are controlled by the MIDlet interface, which supports the following methods:
• pauseApp() – the MIDlet should release any temporary resources and become passive.
• startApp() – the MIDlet starts its execution, needed resources can be acquired here or in

the MIDlet constructor.
Note: Take care that the startApp() method is always properly terminated before calling the
destroyApp() method. For example, avoid that threads launched by startApp() enter a
closed loop, and be sure that all code was entirely executed. This is especially important
for OTAP, which needs to call destroyApp().

• destroyApp() – the MIDlet should save any state and release all resources
Note: To destroy only the Java application without switching off the module, the destroy-
App() method can be called explicitly. To destroy the Java application and switch off the
module at the same time, it is sufficient to send the AT^SMSO command from somewhere
in your code, because this procedure implies calling the destroyApp() method. Likewise,
resetting the module with AT+CFUN=x,1 also implies calling the destroyApp() method.
Note that AT+CFUN=x,1 will restart the module – to restart Java afterwards either use the
autostart mode configured with AT^SCFG or restart Java with AT^SJAM or AT^SJRA.

From this you can see that the commands AT^SMSO and AT+CFUN=x,1 should never be
sent within the destroyApp() method. It is good practice to always call the notifyDestroyed()
method at the end of your destroyApp() method. And use the destroyApp() method as sin-
gle exit point of your MIDlet.

Java User’s Guide
6.3 Multiple MIDlets
37

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 36 of 107

• notifyDestroyed() – the MIDlet notifies the application management software that it has
cleaned up and is done.
Note: the only way to terminate a MIDlet is to call notifyDestroyed(), but destroyApp() is not
automatically called by notifyDestroyed(). You must not terminate your MIDlet (i.e. having
no threads left) and not calling notifyDestroyed() before.

• notifyPaused() – the MIDlet notifies the application management software that it has
paused

• resumeRequest() – the MIDlet asks application management software to be started again.

6.3 Multiple MIDlets

The module is capable of running multiple MIDlets in parallel. All MIDlets are alike in that they
have to share the same system resources like interfaces, memory and processing power. This
has to be considered and controlled - especially when different MIDlets need to access the
same system resources.

The maximum number of MIDlets running simultaneously is eight while in normal operation and
seven while doing on-device debugging. When the maximum number of MIDlets is reached a
further MIDlet will still start (“startApp” method is called) but it will then terminate immediately
with an error message on System.out.

It is recommended to keep the total number of MIDlets low in real world applications.

Table 1: A typical sequence of MIDlet execution

Application Management Software MIDlet

The application management software creates a new instance of a
MIDlet.

The default (no argument) con-
structor for the MIDlet is called; it
is in the Paused state.

The application management software has decided that it is an
appropriate time for the MIDlet to run, so it calls the MIDlet.star-
tApp() method for it to enter the Active state.

The MIDlet acquires any
resources it needs and begins to
perform its service.

The application management software no longer needs the applica-
tion be active, so it signals it to stop performing its service by calling
the MIDlet.pauseApp() method.

The MIDlet stops performing its
service and might choose to
release some resources it cur-
rently holds.

The application management software has determined that the
MIDlet is no longer needed, or perhaps needs to make room for a
higher priority application in memory, so it signals the MIDlet that it
is a candidate to be destroyed by calling the MIDlet.destroyApp()
method.

If it has been designed to do so,
the MIDlet saves state or user
preferences and performs clean
up.

Java User’s Guide
6.4 Hello World MIDlet
37

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 37 of 107

6.4 Hello World MIDlet

Here is a sample HelloWorld program.

/**
 * HelloWorld.java
 */

package example.helloworld;
import javax.microedition.midlet.*;
import java.io.*;

public class HelloWorld extends MIDlet {

 /**
 * HelloWorld - default constructor
 */
 public HelloWorld() {
 System.out.println("HelloWorld: Constructor");
 }

 /**
 * startApp()
 */
 public void startApp() throws MIDletStateChangeException {
 System.out.println("HelloWorld: startApp()");
 System.out.println("\nHello World!\n");
 destroyApp();
 }

 /**
 * pauseApp()
 */
 public void pauseApp() {
 System.out.println("HelloWorld: pauseApp()");
 }

 /**
 * destroyApp()
 */
 public void destroyApp(boolean cond) {
 System.out.println("HelloWorld: destroyApp(" + cond + ")");
 notifyDestroyed();
 }
}

Java User’s Guide
7 File Transfer to Module
39

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 38 of 107

7 File Transfer to Module

7.1 Module Exchange Suite

The Module Exchange Suite allows you to view the Flash file system on the module as a direc-
tory from Windows Explorer. Make sure that the module is turned on and that one of the mod-
ule’s serial interfaces (ASC0, ASC1 or USB) is connected to the COM port that the Module
Exchange Suite is configured to. The configured COM port can be checked or changed under
Properties of the Module directory. Please note that the Module Exchange Suite can be used
only if the module is in normal mode and the baud rate is configured to a fixed value of 921600,
460800, 230400, 115200, 57600, 38400 or 19200. Please also note that the use of the Module
Exchange Suite resets the module’s AT command settings to their factory defaults (just as the
command AT&F would). Possible user defined profiles stored non-volatile with AT&W will have
to be restored with ATZ after usage.

While running the module with the Module Exchange Suite, subdirectories and files can be add-
ed to the flash file system of module. Keep in mind that a maximum of 200 flash objects (files
and subdirectories) per directory in the flash file system of the module is recommended.

Note: If the module is turned on and one of the module's serial interfaces (ASC0 or ASC1) is
connected to the COM port that the Module Exchange Suite is configured to, the character
framing and parity format used for receiving and transmitting data via UART must be "8bits, no
parity,1 stop bit". If you use AT command (eg, "AT+ICF") to change the character framing and
parity format (eg, to "8 bits, no parity, 2 stop bits" or other format) for some reason, please re-
store it to "8bits, no parity,1 stop bit" before you use Module Exchange Suite.

7.1.1 Windows Based

The directory is called “Module” and can be found at the top level of workspace “MyComputer”.
To transfer a file to the module, simply copy the file from the source directory to the target di-
rectory in the “Module  Module Disk (A:)”.

7.1.2 Command Line Based

A suite of command line tools is available for accessing the module’s Flash file system. They
are installed under Module Exchange Suite installation directory so that the tools are available
from any directory. The module’s file system is accessed with mod:. The tools included in this
suite are MESdel, MEScopy, MESxcopy, MESdir, MESmkdir, MESrmdir, MESport, MESclose
and MESformat. Entering one of these commands without arguments will describe the com-
mand’s usage. The tools mimic the standard directory and file commands. A path inside the
module’s file system is identified by using “mod:” followed by the module disk which is always
“A:” (e.g. “MESdir mod:a:” lists the contents of the module’s root directory).

7.2 Over the Air Provisioning

See Chapter 8 for OTA provisioning.

Java User’s Guide
7.3 Security Issues
39

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 39 of 107

7.3 Security Issues

The developer should be aware of the following security issues. Security aspects in general are
discussed in Chapter 11.

7.3.1 Module Exchange Suite

The serial interface should be mechanically protected.

The copy protection rules for Java applications prevent opening, reading, copying, moving or
renaming of JAR files. It is not recommended that the name of a Java application (for example
<name>.jar) be used for a directory, since the copy protection will refuse access to open, copy
or rename such directories.

7.3.2 OTAP

• A password should be used to update with OTA (SMS Authentication)
• Parameters should be set to fixed values (AT^SJOTAP) whenever possible so that they

cannot be changed over the air.
• The HTTP server should be secure (e.g. access control via basic authentication).
• Ensure that the OTAP server does not add a blank to the names of JAR and JAD files,

because this will cause problems with OTAP.

Java User’s Guide
8 Over The Air Provisioning (OTAP)
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 40 of 107

8 Over The Air Provisioning (OTAP)

8.1 Introduction to OTAP

OTA (Over The Air) Provisioning of Java Applications is common practice in the Java world.
OTAP describes mechanisms to install, update and delete Java applications over the air. The
ME implements the Over The Air Application Provisioning as specified in the IMP-NG standard
(JSR228).

The OTAP mechanism described in this document does not require any physical user interac-
tion with the device; it can be fully controlled over the air interface. Therefore it is suitable for
Java devices that are designed not to require any manual interaction such as vending ma-
chines or electricity meters.

8.2 OTAP Overview

To use OTAP, the developer needs, apart from the device fitted with the Java enabled module,
an HTTP(S) server that is accessible over a TCP/IP connection, and an SMS sender that can
send Class1, PID $7d short messages. This is the PID reserved for a module’s data download.

Figure 15: OTAP Overview

The Java Application Server (HTTP(S) Server) contains the .jar and the .jad file to be loaded
on the device. Access to these files can be protected by HTTP basic authentication.

The OTAP Controller (SMS Sender) controls the OTAP operations. It sends SMs, with or with-
out additional parameters, to the devices that are to be operated. These devices then try to con-
tact the HTTP server and download new application data from it. The OTAP Controller will not
get any response about the result of the operation. Optionally the module can send a result re-
sponse over HTTP if supported by the server.

There are two types of OTAP operations:
• Install/Update: A new JAR and JAD file are downloaded and installed.
• Delete: A complete application (.jar, .jad, all application data) is deleted.

Java Application Server
(HTTP Server)

.jar file
.jad file

Cinterion Device
containing

.jad file
.jar file

OTAP Controller
(SMS Sender)

HTTP(S)/TCP/IP

SMS Class1, Pid $7d

Java User’s Guide
8.3 OTAP Parameters
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 41 of 107

8.3 OTAP Parameters

There is a set of parameters that control the OTAP procedures. These parameters can either
be set by AT command (AT^SJOTAP, refer to [1]), during the production of the device, or by
SM (see Section 8.4) during operation of the device in the field.

Parameters that are set by AT command cannot be overwritten by SM. Parameter that were
not configured by AT command can be configured via SMS - however, the SMS configuration
will not be saved. For security reasons these parameters should therefore also be configured
by AT command before the first OTAP is triggered by SM. After a firmware update, it is recom-
mended to configure the OTAP parameters by AT command again, because the previously
saved configuration (with the previous firmware) may be out-of-date.

• JAD File URL: The location of the JAD file is used to install or update procedures. The JAD
file needs to be located on the net (e.g. http://someserver.net/somefile.jad or http://
192.168.1.2/somefile.jad). A URL parameter set via SMS will be appended to the URL set
by AT command, regardless of whether the URL configured by AT command is the com-
plete JAD file path or not. This can be used to handle different Java applications on the
same server. If you would like to encrypt the data transmission use HTTPS, e.g. https://
someserver.net/somefile.jad.

• HTTP User: A username used for authentication with the HTTP server.
• HTTP Password: A password used for authentication with the HTTP server.
• Bearer: The network bearer used to open the HTTP/TCP/IP connection.
• APN: Depending on the selected network bearer this is an access point name for GPRS.
• Net User: A username used for authentication with the network.
• Net Password: A password used for authentication with the network.
• DNS: A Domain Name Server’s IP address used to query hostnames.
• NotifyURL: The URL to which results are posted. This parameter is only used when the

MIDlet-Install-Notify attribute or MIDlet-Delete-Notify attribute is not present in descriptor. If
the NotifyURL parameter is specified, Bearer and APN parameters are both mandatory.

There are parameters that can only be set by AT command:
• SM Password: it is used to authenticate incoming OTAP SMs. Setting this password gives

an extra level of security.
Note: If a password set by AT command, all SMs must include this password.

• Ignore SM PID: when setting this the PID in received SMs is ignored.
• Hide HTTP authentication parameters: this allows to hide the HTTP authentication param-

eters in the AT^SJOTAP read command and the OTAP tracer.

Table 2: Parameters and keywords

Parameters Max. Length AT Keyword SM Install/update delete

JAD File URL 100 JADURL mandatory mandatory

HTTP User 32 HTTPUSER optional unused

HTTP Password 32 HTTPPWD optional unused

Bearer -- BEARER mandatory optional/P

APN or Number 65 APNORNUM mandatory for CSD optional/P

Net User 32 NETUSER optional optional/P

Net Password 32 NETPWD optional optional/P

Java User’s Guide
8.4 Short Message Format
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 42 of 107

The length of the string parameters in the AT command is limited (see Table 2), the length in
the SM is only limited by the maximum SM length.

The minimum set of required parameters depends on the intended operation (see Table 2).
“optional/P” indicates that this parameter is only necessary when a POST result is desired.

8.4 Short Message Format

An OTAP control SM must use a Submit PDU with Class1, PID $7d and 8 or 7 bit encoding. As
a fallback for unusual network infrastructures the SM can also be of Class0 and/or PID $00.
The content of the SM consists of a set of keywords and parameter values all encoded in ASCII
format. These parameters can be distributed over several SMs. There is one single keyword to
start the OTAP procedure. For parameters that are repeated in several SMs only the last value
sent is valid. For example, an SM could look like this:

Install operation:
First SM:

OTAP_IMPNG
PWD:secret
JADURL:http://www.greatcompany.com/coolapps/mega.jad
HTTPUSER:user
HTTPPWD:anothersecret

Second SM:
OTAP_IMPNG
PWD:secret
BEARER:gprs
APNORNUM:access.to-thenet.net
NETUSER:nobody
NETPWD:nothing
DNS:192.168.1.2
START:install

Delete operation:
OTAP_IMPNG
PWD:secret
JADURL:http://www.greatcompany.com/coolapps/mega.jad
START:delete

DNS -- DNS optional optional/P

Notify URL 100 NOTIFYURL optional optional/P

SM Password 32 PWD optional optional

Ignore SM PID -- -- -- --

Hide HTTP authentica-
tion parameters

-- -- -- --

Table 2: Parameters and keywords

Parameters Max. Length AT Keyword SM Install/update delete

Java User’s Guide
8.5 Java File Format
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 43 of 107

The first line is required: it is used to identify an OTAP SM. All other lines are optional and their
order is insignificant, each line is terminated with an LF: '\n' including the last one. The key-
words, in capital letters, are case sensitive. A colon separates the keywords from their values.

The values of BEARER and START are used internally and must be lower case. The password
(PWD) is case sensitive. The case sensitivity of the other parameter values depends on the
server application or the network. It is likely that not all parameters can be sent in one SM. They
can be distributed over several SMs. Every SM needs to contain the identifying first line
(OTAP_IMPNG) and the PWD parameter if a mandatory password has been enabled. OTAP
is started when the keyword START, possibly with a parameter, is contained in the SM and the
parameter set is valid for the requested operation. It always ends with a reboot, either when the
operation is completed, an error occurred, or the safety timer expired. This also means that all
parameters previously set by SM are gone.

Apart from the first and the last line in this example, these are the parameters described in the
previous section. Possible parameters for the START keyword are: “install”, “delete” or nothing.
In the last case, an install operation is done by default.

The network does not guarantee the order of SMs. So when using multiple SMs to start an
OTAP operation their order on the receiving side might be different from the order in which they
were sent. This could lead to trouble because the OTAP operation might start before all param-
eters are received. If you discover such problems, try waiting a few seconds between each SM.

OTAP is implemented as a special SM listener in the system, i.e., the OTAP SMS handling ac-
knowledges and then removes OTAP SMs from system. So, OTAP SMs are not subject to the
normal SM processing in the module. The customer application does not need to take care of
OTAP SMs - they will not fill up any SM storage.

8.5 Java File Format

In general, all Java files have to comply with the IMP-NG and ME specifications. There are cer-
tain components of the JAD file that the developer must pay attention to when using OTAP:
• MIDlet-Jar-URL: make sure that this parameter points to a location on the network where

your latest JAR files will be located, e.g. http://192.168.1.3/datafiles/mytest.jar (or just
mytest.jar if the rest of the URL is equal to the JAD file URL). Otherwise this JAD file is use-
less for OTAP.

• MIDlet-Install-Notify: this is an optional entry specifying a URL to which the result of an
update/install operation is posted. That is the only way to get any feedback about the out-
come of an install/update operation. The format of the posted URL complies with the IMP-
NG OTA Provisioning specification. In contrast to the jar and jad file this URL must not be
protected by basic authentication.

• MIDlet-Delete-Notify: this is an optional entry specifying a URL to which the result of a
delete operation is posted. That is the only way to get any feedback about the outcome of
a delete operation. The format of the posted URL complies with the IMP-NG OTA Provision-
ing specification. In contrast to the jar and jad file this URL must not be protected by basic
authentication.

• MIDlet-Name, MIDlet-Version, MIDlet-Vendor: are mandatory entries in the JAD and Man-
ifest file. Both files must contain equal values, otherwise result 905 (see Section 8.7) is
returned.

• MIDlet-Jar-Size must contain the correct size of the jar file, otherwise result 904 (see Sec-
tion 8.7) is returned.

Java User’s Guide
8.5 Java File Format
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 44 of 107

Example:

A suitable Manifest file for the JAD file above might look like:

MIDlet-Name: MyTest
MIDlet-Version: 1.0.1
MIDlet-Vendor: TLR Inc.
MIDlet-Jar-URL: MyTest.jar
MIDlet-Description: My very important test
MIDlet-1: MyTest, , example.mytest.MyTest
MIDlet-Jar-Size: 1442
MicroEdition-Profile: IMP-NG
MicroEdition-Configuration: CLDC-1.1

Manifest-Version: 1.0
MIDlet-Name: MyTest
MIDlet-Version: 1.0.1
MIDlet-Vendor: TLR Inc.
MIDlet-1: MyTest, , example.mytest.MyTest
MicroEdition-Profile: IMP-NG
MicroEdition-Configuration: CLDC-1.1

Java User’s Guide
8.6 Procedures
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 45 of 107

8.6 Procedures

8.6.1 Install/Update

Figure 16: OTAP: Install/Update Information Flow (messages in brackets are optional)

When an SM with keyword START:install is received and there is a valid parameter set for the
operation, the module always reboots either when the operation completed, an error occurred
or the safety timer expired. If there is any error during an update operation the old application
is kept untouched.

Java Application
Server

Cinterion device

Parameter SMS

...

Parameter SMS with "START:install"

-SMS password check
-Parameters collection

- Combination of SMS parameter
set and AT parameter set
- If parameter set complete:
Close running Java applications

(HTTP basic authentication)

HTTP request for .jad file

HTTP .jad file download

HTTP request for .jar file

HTTP download of .jar file

(HTTP basic authentication)

Download .jad file

Download .jar file

(HTTP Post Error)

(HTTP Post Result)

If Error, post and
reboot

-Post result,
-If success, install
-Reboot

OTAP
Controller

S
afe

ty T
im

e
ou

t

Reboot

Start install/update procedure

C
lo

sedo
w

n
T

im
eout

Java User’s Guide
8.6 Procedures
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 46 of 107

8.6.2 Delete

Figure 17: OTAP: Delete Information Flow (messages in brackets are optional)

When an SM with keyword START: delete is received and there is a valid parameter set for this
operation, the module reboots either when the operation completed, an error occurred or the
safety timer expired. If there is any error the application is kept untouched.

Java Application
Server

Cinterion device

Parameter SMS

...

 Parameter SMS with "START:delete"

-SMS password check
-Parameters collection

- Combination of SMS parameter
set and AT parameter set
- If parameter set complete:
Close running Java applications

reboot

OTAP
Controller

S
afety T

im
eou

t

Reboot

Start delete procedure

C
losedow

n
T

im
e

ou
t

(HTTP Post Result)

Delete application dir

Java User’s Guide
8.7 Time Out Values and Result Codes
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 47 of 107

8.7 Time Out Values and Result Codes

Timeouts:
• Closedown Timeout: 10 seconds
• Safety Timeout: 20 minutes

Result Codes: Supported status codes in body of the HTTP POST request:
• 900 Success
• 901 Insufficient memory in filesystem
• 902 User cancelled, i.e. HTTP authentication failed
• 903 - not supported-
• 904 JAR size mismatch, given size in JAD file does not match real size of jar file
• 905 Attribute mismatch, one of the mandatory attributes MIDlet-name, MIDlet-version, MID-

let-Vendor in the JAD file does not match those given in the JAR manifest
• 906 Invalid descriptor, something is wrong with the format of the .jad file
• 907 invalid JAR, the JAR file was not available under MIDlet-Jar-URL, files could not be

extracted from JAR archive, or something else is wrong with the format of the file.
• 908 incompatible configuration or profile
• 909 application authentication failure, signature did not match certificate
• 910 application authorization failure, tried to replace signed with unsigned version
• 911 -not supported-
• 912 Delete Notification

All HTTP packets (GET, POST) sent by the module contain the IMEI number in the User-Agent
field, e.g.

User-Agent: <productname>/000012345678903 Profile/IMP-NG Configuration/CLDC-1.1

This eases device identification at the HTTP server.

8.8 Tips and Tricks for OTAP

• For security reasons it is recommended that an SMS password be used. Otherwise the
’delete’ operation can remove entire directories without any authentication.

• As a side effect, OTAP can be used to simply reboot the module. Simply start an OTAP pro-
cedure with a parameter set which will not really do anything, such as a delete operation on
a nonexistent directory.

• If you do not want to start OTAP by SMS let your Java application do it by issuing the
AT^SJOTAP command. This triggers an install/update operation as described in Section
8.6.1 but without the SMS part.
Note: If a malfunctioning Java application is loaded the SM method will still be needed for
another update.

• The OTAP procedure cannot be tested in the debug environment.
• Be aware that the module needs to be logged into the network to do OTAP. That means

that either the Java application must enter the PIN or the PIN needs to be disabled.

Java User’s Guide
8.9 OTAP Tracer
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 48 of 107

8.9 OTAP Tracer

For easy debugging of the OTAP scenario, the OTAP procedure can be traced over the serial
interface. The trace output shows details of the OTAP procedure and the used parameters. To
enable the OTAP trace output use the AT command AT^SCFG, e.g.
AT^SCFG=Trace/Syslog/OTAP,1

The serial interface on which you issue this command is then exclusively used for the OTAP
tracer. All other functionality which is normally present (AT commands or CommConnection
and System.out in Java) is not available when the tracer is on.

This feature is intended to be used during development phase and not in deployed devices.

8.10 Security

Java Security as described in Chapter 11 also has consequences for OTAP. If the module is in
secured mode the MIDlet signature is also relevant to the OTAP procedure. This means:
• If the application is an unsigned version of an installed signed version of the same applica-

tion then status code 910 is returned.
• If the applications signature does not match the module’s certificate then status code 909

is returned.

For security reason the reception of OTAP SMSs is disabled until the AT^SJOTAP write com-
mand has been issued at least once. This saves non Java users from using an open module
unintentionally.

8.11 How To

This chapter is a step-by-step guide for using OTAP.
1. Do you need OTAP? Is there any chance that it might be necessary to update the Java

application, install a new one or delete it? It could be that device is in the field and you can-
not or do not want to update it over the serial line. If the answer is “yes” then read through
the following steps, if the answer is “no” then consider simply setting the OTAP SMS pass-
word to protect your system. Then you are finished with OTAP.

2. Take a look at the parameters (Section 8.3), which control OTAP. You need to decide which
of them you want to allow to be changed over the air (by SMS) and which you do not. This
is mainly a question of security and what can fit into a short message. Then set the
“unchangeable” parameters with the AT command (AT^SJOTAP).

3. Prepare the HTTP server. The server must be accessible from your device over TCP/IP.
That means there is a route from your device over the air interface to the HTTP server and
back. When in doubt, write a small Java application using the HTTP Connection Interface
to test it. If you desire to use encrypted file transfer make sure that your HTTP server is set
up correctly for HTTPS.

4. Prepare the JAR and JAD files which are to be loaded over the air. Make sure that these
files conform to the requirements listed in Section 8.5 and that they represent a valid appli-
cation which can be started by AT^SJRA.

Java User’s Guide
8.11 How To
49

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 49 of 107

5. Put the files (JAR and JAD) on the HTTP Server. The files can either be publicly available
or protected through basic authentication. When in doubt try to download the files from the
server by using a common Web browser on a PC, which can reach your HTTP server over
TCP/IP. The HTTP server must be set up to handle the correct MIME types for the .jar and
.jad files. For jad files, the MIME type should be set to text/vnd.sun.j2me.app-descriptor. For
jar files, the MIME type should be set to application/java-archive jar.

6. Prepare the SM sender. The sender must be able to send SMs, which conform to Section
8.4, to your device. When in doubt try to send “normal” SMs to your device which can than
be read out from the AT command interface.

7. Test with a local device. Send a suitable short message to your device, which completes
the necessary parameter, sets and starts the operation. The operation is finished when the
device reboots. You can now check the device if the operation completed as desired.

8. Analyze errors. If the above test failed, looking at your device’s behavior and your HTTP
servers access log can give you a hint as to what went wrong:
- f the device did not terminate the running Java applications and did not reboot, not even

after the safety timeout, either your SM was not understood (probably in the wrong for-
mat) or it did not properly authenticate (probably used the wrong password) or your
parameter set is incomplete for the requested operation.

- If the device terminated the running Java applications, but did not access your HTTP
server, and rebooted after the safety timeout, there were most likely some problems
when opening the network connection. Check your network parameters.

- If the device downloaded the jad and possibly even the jar file but then rebooted without
saving them in the file system, most likely one of the errors outlined in Section 8.5
occurred. These are also the only errors which will return a response. They are posted to
the HTTP server if the jad file contains the required URL.

9. Start update of remote devices. If you were able to successfully update your local device,
which is hopefully a mirror of all your remote devices, you can start the update of all other
devices.

Java User’s Guide
9 Compile and Run a Program without a Java IDE
53

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 50 of 107

9 Compile and Run a Program without a Java IDE

This chapter explains how to compile and run a Java application without a Java IDE.

9.1 Build Results

A JAR file must be created by compiling an CMTK project. A JAR file will contain the class files
and auxiliary resources associated with an application. A JAD file contains information (file
name, size, version, etc.) on the actual content of the associated JAR file. It must be written by
the user. The JAR file has the “.jar” extension and the JAD file has the “.jad” extension. A JAD
file is always required no matter whether the module is provisioned with the Module Exchange
Suite, as described in Section 7.1, or with OTA provisioning. OTA provisioning is described in
Chapter 7.

In addition to class and resource files, a JAR file contains a manifest file, which describes the
contents of the JAR. The manifest has the name manifest.mf and is automatically stored in the
JAR file itself. An IMP manifest file for:

includes at least:

A JAD file must be written by the developer and must include at least:

A detailed description of these attributes can be found in [4].

Please note that the property "MIDlet-Jar-Size" must contain the correct size of the JAR file.
Otherwise the MIDlet cannot be started. The tools "SetJadProp.exe" and "GetJadProp.exe" un-
der the WTK bin directory provid convenient access to jad file properties via command line.

package example.mytest;
public class MyTest extends MIDlet

Manifest-Version: 1.0
MIDlet-Name: MyTest
MIDlet-Version: 1.0.1
MIDlet-Vendor: Test Inc.
MIDlet-1: MyTest, example.mytest.MyTest
MicroEdition-Profile: IMP-NG
MicroEdition-Configuration: CLDC-1.1

MIDlet-Name: MyTest
MIDlet-Version: 1.0.1
MIDlet-Vendor: Test Inc.
MIDlet-1: MyTest, example.mytest.MyTest
MIDlet-Jar-URL: http://192.168.1.3/datafiles/MyTest.jar
MIDlet-Jar-Size: 1408
MicroEdition-Profile: IMP-NG
MicroEdition-Configuration: CLDC-1.1

Java User’s Guide
9.2 Compile
53

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 51 of 107

The batch files for building the provided examples are using these tools to set the property
"MIDlet-Jar-Size" automatically during the build process.

Note that the ATCommand class is provided as an external library "cwmlib_1.0.jar" located in
the WTK subfolder "resources". So the content of this library must be added to each MIDlet us-
ing the ATCommand class. The batch files for building the provided WTK command line exam-
ples can be used as reference.

9.2 Compile

• Launch a Command Prompt. This can be done from the Programs menu or by typing "cmd"
at the Run... prompt in the Start menu.

• Change to the directory where the code to be compiled is kept.
Compile the program with the SDK. Examples of build batch files can be found in each sam-
ple program found in the samples directory "Documents and Settings\All Users\Cinterion\
EHS5 WTK Examples\WTKSamples" under Windows XP or "Users\Public\Cinterion\EHS5
WTK Examples\WTKSamples" under Windows Vista and above. The samples directory
can be opened directly via the WTK start menu entry.

• If the compile was successful the program can be transferred to the module and executed
as described in the following chapters.

The batch files for compiling the samples are using the system environment variables
EHS5_JAVA_HOME and EHS5_WTK_HOME and EHS5_CLASSPATH. The first one points
to the root directory of the installed JDK, the second one to the root directory of the Cinterion-
CMTK-EHS5-IMPNG installation and the last one contains the class path including all used
Java libraries. The installation process sets these environment variables. A modification is usu-
ally not necessary.

9.3 Run on the Module with Manual Start

• Compile the application at the prompt as discussed in Section 9.2 or in an IDE.
• Transfer the .jar and .jad file from the development platform to the desired directory on the

module using the Module Exchange Suite or OTA provisioning. Chapter 7 explains how to
download your application to the module.

• Start a terminal program and connect to ASC0.
• The command AT^SJAM is used to install/remove, start/stop the application and is sent to

the module via your terminal program. Either the application can be started by .jar or by .jad
file.

Example:
In your terminal program enter AT^SJAM=0,"a:/helloworld.jad","" to install and then
AT^SJAM=1,"a:/helloworld.jad","" to start the application.

Depending on which file you specify the java application manager tries to find the correspond-
ing file in the same directory. This search is not done by name, but by comparing the contained
attributes. The first file which contains the same values for MIDlet-Name, MIDlet-Version and
MIDlet-Vendor is used.

Java User’s Guide
9.4 Run on the Module with Autostart
53

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 52 of 107

9.4 Run on the Module with Autostart

• Compile the application at the prompt as discussed in Section 9.2 or in an CMTK integrated
IDE.

• Transfer the .jar and .jad file from the development platform to the desired directory on the
module using the Module Exchange Suite or OTA provisioning. See Chapter 7.

9.4.1 Switch on Autostart

• There is an AT command, AT^SCFG, for global autostart functionality configuration. Please
refer to [1].

• In addition every MIDlet that is started automatically needs to be configured via its jad file
and the following properties:
- Oracle-MIDlet-Autostart: [0-5], autostart order. 0 means no autostart. For MIDlets with

the same level the order is not defined.
- Oracle-MIDlet-Restart: [true|false], if true the MIDlet is automatically restarted if it termi-

nates non gracefully, e.g. by an uncaught exception.
- Oracle-MIDlet-Restart-Count: [number], number of allowed MIDlets restarts before the

whole module is rebooted
• Reinstall the MIDlet
• Restart the module.

After an automatic MIDlet start or restart, the following information is written to standard output:
"MIDlet:" followed by the MIDlet class name and the action performed.

Example:
"MIDlet:com.cinterion.jrc.JRC_Midlet autostart"

9.4.2 Switch off Autostart

There are two methods for switching off the autostart feature:
• The AT^SCFG command to disable autostart globally, or
• Uninstall a single MIDlet or reinstall it with changed jad file properties using AT^SJAM

These AT command are preferable issued over one of the AT commands channels on USB.

Java User’s Guide
9.4 Run on the Module with Autostart
53

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 53 of 107

9.4.3 Autostart Fail-Safe

There is an autostart fail-safe mechanism implemented that prevents the module from conti-
nous reboots caused by a MIDlet. Each time Java ends and the module reboots within 20s after
module power-up a counter is incremented. This reboot might be caused by some malfunction-
ing inside a MIDlet (e.g. uncaught exceptions), by Java itself but also by the AT command
AT+CFUN. If this happens six times in a row, autostart (and therefore Java) will be disabled
temporarily.

If the module is rebooted after that, or if the module runs longer than 20s in between reboots,
the whole autostart fail-safe mechanism starts over again from zero.

A further autostart fail-safe mechanism is based on the JRC MIDlet delivered with the module
by Gemalto M2M. If this MIDlet is not started, for example because autostart is disabled, a URC
^SYSINFO: 200 is generated after 40 seconds.

The startup of this JRC MIDlet is monitored via timer. If the timer times out - the timer runtime
depends on the JRC MIDlet version, but will as a rule be 30 seconds - a URC ^SYSINFO: 201
is generated, and the module restarts after another 5 seconds.

The number of restarts, initiated by unsuccessful startups from the JRC MIDlet, is monitored.
If this number exceeds 8, the startup of the JRC MIDlet is disabled, a URC ^SYSINFO: 202 is
generated, and a shutdown timer of 10 minutes is started. After this timeout, the module switch-
es off.

Java User’s Guide
10 Compile and Run a Program with a Java IDE
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 54 of 107

10 Compile and Run a Program with a Java IDE

10.1 Debug Environment

10.1.1 Data Flow of a Java Application in the Debug Environment

Figure 18: Data flow of a Java application in the debug environment

In the debug environment the module is connected to a PC via a serial interface. This can be
a USB or RS232 line. The application can then be edited, built, debugged or run within an IDE
on the PC. When running or debugging the MIDlet under IDE control it is executed on the mod-
ule (on-device execution) and not on the PC. This can be either debugging mode, where the
MIDlet execution can still be controlled from the IDE (on-device debugging) or normal mode,
where the MIDlet is copied to the module and started normally. This ensures that all interfaces
behave the same whether debugging mode is used or not.

USB,
ASC0,ASC1

Com Port

Module
Emulator

IDE/Debug
environment

Module

PC

JVM
Flash File
System

File I/O API

ADC/DAC API

ASC0/1

AT command API

I2CGPIO

AT parser

TCP/IP

DAC/ADC

system.out USB

I2C/SPI API

SPI

IMP NGGPIO API

Java User’s Guide
10.1 Debug Environment
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 55 of 107

10.1.2 Emulator

The ME emulator is part of the CMTK and is used as the controlling entity for on-device debug-
ging (ODD). Some values can be configured in the file "wtk/bin/WM_Debug_config.ini". The
emulator runs fine without changes in WM_Debug_config.ini file and should not be modified
under normal circumstances.

Debugging information between the debugger (IDE) and the JVM is transferred over an IP con-
nection. In order to establish this IP connection between the PC and the module the emulator
needs a special dial-up network (DUN):
• ISP name: "IP connection for remote debugging of EHSx"
• Modems: "Cinterion EHSx Java Debug Modem USB" for USB serial modem and "Cinterion

EHSx Java Debug Modem Ser"
• Phone number: *88#
• Disable the Redial if line dropped option.
• Enable Connect automatically

This dial-up network (DUN) connection is installed automatically together with the required mo-
dem device during installation of the CMTK. The emulator always uses the serial port config-
ured for this DUN connection.

To successfully setup the DUN connection for ODD over the serial interface, the three lines
DCD0, DTR0 and DSR0 should be configured using the following AT commands:
• AT^SCFG="GPIO/mode/DCD0","std" (enables DCD0 line for ASC0)
• AT^SCFG="GPIO/mode/DTR0","std" (enables DTR0 line for ASC0)
• AT^SCFG="GPIO/mode/DSR0","std" (enables DSR0 line for ASC0)

It is possible to use any of the three serial interfaces (USB, ASC0, ASC1) to connect with the
module, but then functionality normally available over the interface will be lost. Also, the DUN
under Windows needs the DCD line of the serial interface. The ASC1 interface of the EHSx
modules does not have this DCD line and the line will therefore have to be electrically set to
high for debugging over ASC1 - something that cannot be done by AT command. In addition,
the missing DTR input on ASC1 may prevent the module from detecting the termination of the
DUN, so in some cases the module has to be reset manually after the debug session was ter-
minated. Because of the above mentioned issues for ASC1 and for general performance rea-
sons it is recommended to use the USB interface for debugging (see also Section 10.1.3).

If using the USB interface in a debugging session, please note that it is recommended to wait
some seconds before starting a debugging session once again after the end of a previous de-
bugging session, because the Windows operation system needs some seconds to enable the
USB port once again after the "IP connection for remote debugging of EHSx" is closed.

If necessary, the IP addresses used for the debug connection can be changed. This is done in
the file "WM_Debug_config.ini". For details, see also the AT^SCFG command and its "User-
ware/DebugInterface" parameters described in [1]. Please keep in mind that the IP address
range 10.x.x.x is not supported for in device debugging!

During installation of CMTK some new programs are installed for handling the debugging ses-
sion in conjunction with the IDE. The installation routine of the CMTK does not change any con-
figuration of an existing firewall on your PC. In case a firewall is installed on your PC and the
local configured and used IP connection (DUN connection for debugging) is blocked or dis-
turbed by this firewall, please configure the firewall or the DUN connection manually to accept
the new installed programs and the port or to use another port or contact your local PC admin-
istrator for help.

Java User’s Guide
10.1 Debug Environment
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 56 of 107

10.1.3 Change Baud Rate

By default, the Cinterion CMTK installation process implements the connection necessary for
on device debugging with the maximum possible baud rate supported by both the target com-
puter and the connected module. For optimized performance Gemalto M2M recommends to
use the USB interface for debug connections, because then the baud rate used on that virtual
USB COM port is irrelevant.

If a serial COM port is employed however, the configured baud rate might not work reliably, de-
pending on the quality of the used serial cable and COM port hardware. In these cases it might
become necessary to change the baud rate of the debug connection manually. This has to be
done as follows:

• First, the baud rate of the modem device "Cinterion EHSx Java Debug Modem Ser" has to
be set to the required maximum port speed. The modem properties are available via the
Windows device manager or the phone and modem options (see Figure 19).

Figure 19: Specify maximum port speed for modem device

• Then the baud rate used by the debug connection "IP connection for remote debugging of
EHSx" must be set to exactly the same value. The properties of the debug connection are
available via the Windows network connection settings (see Figure 20 and Figure 21).

Please note that on device debugging does not work, if the maximum baud rates specified for
modem device and debug connection are not identical. In such a case the emulator aborts de-
bugging with an appropriate error message.

Java User’s Guide
10.1 Debug Environment
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 57 of 107

Figure 20: Configure debug connection

Figure 21: Specify baud rate for debug connection

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 58 of 107

10.2 Using Eclipse for Java Development

The Cinterion WTK is integrated automatically into the Eclipse IDE as of version 4.2.0 named
"Juno" by the setup process if an appropriate Eclipse installation is found on the target comput-
er. For usage of the Cinterion WTK inside Eclipse the "Mobile Tools for Java" (MTJ) plugin must
be installed. Refer to Section 10.2.1 for information how to install this plug in.

In case there is no usable IDE found on the target computer the setup process offers the auto-
matic installation of an adapted Eclipse Juno for Mobile Developers package. This platform is
pre-configured for mobile development and contains already the required MTJ plugin so that
there are no further steps required. Please note that the Eclipse installation is not done via the
Windows installer and therefore the installed files must be removed manually for a deinstalla-
tion. The setup process offers the possibility to enter the target path for the eclipse installation
which is by default the all users profile.

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 59 of 107

10.2.1 Installing the "Mobile Tools for Java" Plugin

The WTK requires an adapted MTJ plugin for Eclipse. Gemalto M2M provides a corresponding
plugin for Eclipse Juno and later. Please note that the MTJ plugin available via the Eclipse pl-
ugin manager in earlier Eclipse releases is not fully compatible to the EHS5 WTK - its usage is
not recommended.

If there is already an appropriate Eclipse installation on the target computer the required MTJ
plugin provided on the installation medium can be installed manually for usage of the Cinterion
WTK. To install the plugin select the menu item "Help" -> "Install New Software…". Then simply
drag the file "Contribution\org.eclipse.mtj.update-site.zip" into the opened window. The table in
the Window will then show the content of the provided plugin archive. Select the complete con-
tent, click "Next" and follow the required steps.

Figure 22: Installing the "Mobile Tools for Java" plugin

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 60 of 107

10.2.2 Integrating Cinterion WTK Manually

The integration of the Cinterion WTK into an appropriate Eclipse installation with added MTJ
plugin can be done by the setup program automatically during first installation or afterwards in
maintenance mode. Therefore it can be done manually as is described in this section. To add
the WTK open the Eclipse menu item "Window" -> "Preferences". In the following window ex-
pand the preference list item "Java ME" and select the sub list item "Device Management".
Then a list with the already installed Java ME devices is shown that is empty in the following
example. For a manual installation select the button "Manual Install…".

Figure 23: Integrating Cinterion WTK manually - Select preference

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 61 of 107

In the following window select the Browse… button, navigate to the root directory of the Cin-
terion EHSx WTK or enter the path "Program Files\Cinterion\CMTK\EHS5\WTK" directly. After
the path has been entered it is scanned for usable CLDC device configurations and the found
Cinterion WTK is added to the list. Please note that during WTK integration the connected de-
vices are queried. For this reason the module must be connected, switched on and the debug
connection must be configured properly during the integration process. In case of Windows fire-
wall notification all connection requests must be granted. If there were firewall notifications it is
possible that the WTK detection fails and must be repeated after the connections have been
allowed.

Figure 24: Integrating Cinterion WTK manually - Browse

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 62 of 107

Now the Cinterion WTK is available in the list of installed Java ME SDKs. Select the device
"IMP_NG_EHS5_REMOTE1" and select "Set as default". To have the Cinterion WTK Java
documentation directly available in your MIDlet projects the following additional steps are nec-
essary. Select the new installed IMP_NG_EHS5 device and click the Edit… button.

Figure 25: Integrating Cinterion WTK manually - Edit

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 63 of 107

In the following window select the Libraries tab and click into the Javadoc column for each jar
library where the corresponding documentation was not added automatically. Once the table
field is activated, a small button with ellipsis appears that allows browsing to the WTK docu-
mentation folder.

Figure 26: Integrating Cinterion WTK manually - Library

In the following window select "Javadoc URL" and navigate to the documentation folder that is
"Program Files\Cinterion\CMTK\EHS5\WTK\doc" after clicking the "Browse…" button. If there
exist a subdirectory with a name corresponding to the selected library file select this documen-
tation. In all other cases select the common "html_impng" documentation tree. The OK button
then adds the Cinterion WTK documentation to the new Java ME device.

Figure 27: Integrating Cinterion WTK manually - Add WTK documentation

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 64 of 107

10.2.3 Import the provided WTK Samples

The Cinterion WTK provides the existing samples in an Eclipse project format as well. To im-
port them into an Eclipse workspace select the Eclipse menu item "File" -> "Import…" In the
following window expand the list item General and select the sub list item "Existing Projects into
Workspace". After clicking the Next button it is possible to navigate to the folder containing the
Cinterion WTK Eclipse samples called "Documents and Settings\All Users\Cinterion\EHS5
WTK Examples\EclipseSamples" under Windows XP or "Users\Public\ Cinterion\EHS5 WTK
Examples\EclipseSamples" under Windows Vista and above.

Figure 28: Import the provided WTK Samples - Select

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 65 of 107

Once the root directory of the samples has been entered the existing projects are added to the
list and can be separately selected for import. Checking or unchecking the checkbox "Copy
projects into workspace" controls whether the samples are copied into the current Eclipse
workspace or kept where they are. After clicking the Finish button the selected samples are
available for editing and debugging.

Figure 29: Import the provided WTK Samples - Copy

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 66 of 107

10.2.4 Creating a new MIDlet

To create a new MIDlet select the menu item File-->New-->Project…. In the following window
expand the list item "Java ME" and select the sub list item "MIDlet Project".

Figure 30: Creating a new MIDlet - Select wizard

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 67 of 107

After clicking the Next button a wizard for MIDlet creation appears. Specify the appropriate op-
tions as required for the new project. Ensure that only the "IMP_NG_EHS5" configuration is se-
lected in the configuration list as active.

Figure 31: Creating a new MIDlet - Create project

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 68 of 107

After clicking the Next button a window for configuring the MIDlet project content opens. Ensure
that the "Microedition Configuration" is set to "Connected Limited Device Configuration (1.1)"
and the "Microedition Profile" is set to "Information Module Profile (NG)". After all necessary
modifications have been done the project can be created by clicking the Finish button.

Figure 32: Creating a new MIDlet - Configure project

Now a newly created MIDlet project is available in the workspace.

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 69 of 107

Figure 33: Creating a new MIDlet - Project overview

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 70 of 107

To ensure the correct Java compiler setting right-click on the newly created project in the pack-
age tree explorer on the left side of the Eclipse window and select "Properties". In the opened
project properties window select the item "Java Compiler" in the list on the left side. Ensure that
the check box "Enable project specific settings" is selected and the "Compiler compliance level"
is set to 1.3 or 1.4.

Figure 34: Creating a new MIDlet - Configure compliance level

If the ATCommand class is to be used the corresponding library must be added to the project.
Right click into the project tree and select "Build Path -> Add External Archives…". Then nav-
igate to the folder "Program Files\Cinterion\CMTK\EHS5\WTK\resources" and select the library
file "cwmlib_1.0.jar". If the Eclipse integration has been done by the EHS5 setup process a
classpath variable was created named "EHS5_WTK_CWMLIB" pointing to that external ar-
chive for convenience. In that case the archive can be added by right-clicking into the project
tree and selecting "Build Path -> Configure Build Path…". In the following dialog select the
property tab "Libraries", click on the button "Add Variable…" and select the variable
"EHS5_WTK_CWMLIB" in the following window. The provided example "AtCmdDemo" uses
this class path variable.

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 71 of 107

Figure 35: Add cwmlib to project

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 72 of 107

To include the content of the cwmlib to the project package in the build path configuration the
cwmlib_1.0.jar or alternatively the variable "EHS5_WTK_CWMLIB" must be selected on the
property tab "Order and Export".

Figure 36: Include cwmlib into project package

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 73 of 107

To create the frame for a MIDlet program right-click into the project tree and select New-->"Ja-
va ME MIDlet". In the following wizard enter the name for the MIDlet and click the Finish button.

Figure 37: Creating a new MIDlet - Program name

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 74 of 107

Now, a corresponding Java file with the source of the basic MIDlet interface is created inside
the source tree of the project. The only thing that remains to be done is to add a call of "noti-
fyDestroyed()" to the "destroyApp()" method.

Figure 38: Creating a new MIDlet - HelloWorld.java

Finally, the actual functionality can be implemented and the project can be started and de-
bugged inside the module as with other Eclipse projects. Please note that you must allow
Eclipse and the debug agent to pass the firewall and configure the debug IP connection as a
home network to be able to execute and debug MIDlets inside the device.

Java User’s Guide
10.2 Using Eclipse for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 75 of 107

10.2.5 Using Eclipse Workspaces

Eclipse follows the concept of different "workspaces". Basically, these are folders on the hard
disk used by Eclipse to store settings and new projects - just as an operating system might
store documents and settings of different users in different directory structures. Eclipse can
manage different workspaces allowing for an easy switching between different development
environments requiring different IDE setups. If not disabled, Eclipse asks before each start for
the workspace to be used.

Figure 39: Using Eclipse workspaces

If Eclipse is installed via the Cinterion WTK setup a default workspace is created automatically
with all required settings. But because Eclipse stores all settings inside the workspaces a new
workspace which has been created via Eclipse it doesn't contain the necessary settings for us-
ing the Cinterion WTK. In this case the required settings can be added manually as described
in Section 10.2.2. Alternatively the Cinterion WTK setup can be executed in maintenance
mode. After scanning for supported IDEs the required settings will be added to all available
workspaces of a found Eclipse installation automatically.

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 76 of 107

10.3 Using NetBeans for Java Development

If an appropriate NetBeans installation (as of version 6.7 or higher) is found on the target com-
puter, the Cinterion WTK is integrated automatically into the NetBeans IDE by the setup pro-
cess. NetBeans 7.2 is distributed as part of the Gemalto M2M installation CD and may be
installed from there, if required. The package is located under the "Contribution" directory. It is
recommended to use NetBeans 7.2. On later or earlier versions the version of the Java client
implemented in the module might not be supported properly.

For usage of the Cinterion WTK inside NetBeans the "Mobility" plugin must be installed. Refer
to Section 10.3.1 for information on how to install this plugin.

10.3.1 Installing the "Mobility" Plugin

The required "Mobility" plugin can be easily installed via the NetBeans plugin manager. This
can be called via the menu item "Tools" --> "Plugins". Inside the plugin manager activate the
tab "Available Plugins" and inside the plugin list select the item "Mobility" in the category "Java
ME". To install the selected plugin click the Install button and follow the given steps.

Figure 40: Installing "Mobility" plugin

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 77 of 107

Please note that the EHSx modules are supporting on device profiling. This feature provides
the possibility to log and analyze the consumed CPU time on a per function base. For using
this feature the plugin "Java ME SDK Tools" from the category "Java ME SDK Tools" must be
installed as well. On NetBeans versions different to 7.2 the "Java ME SDK Tools" might not be
available via the NetBeans plugin manager. In this case the " Java ME SDK 3.2 " must be
downloaded from the following URL and installed manually:
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/default-303768.html

10.3.2 Integrating Cinterion WTK Manually

The integration of the Cinterion WTK into an appropriate NetBeans installation with added Mo-
bility plugin can be done by the setup program automatically during first installation or after-
wards in maintenance mode. Nevertheless it can be done although manually which is
described in this chapter. To add the WTK open the NetBeans menu item "Tools" - "Java Plat-
forms" and click the button "Add Platform…" in the following window.

Figure 41: Integrating Cinterion WTK manually - Select platform

http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/default-303768.html

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 78 of 107

In the following dialog choose the platform type "Java ME MIDP Platform Emulator" or "Java
ME CLDC Platform Emulator" and click the Next button.

Figure 42: Integrating Cinterion WTK manually - Select type

In the file dialog browse to the root folder of the Cinterion WTK directory "Program Files\Cin-
terion\CMTK\EHS5\WTK". Now the Cinterion WTK is listed in the platform dialog. Please note
that during WTK integration the connected devices are queried. For this reason the module
must be connected, switched on and the debug connection must be configured properly during
the integration process. In case of Windows firewall notification all connection requests must
be granted. If there were firewall notifications it is possible that the WTK detection fails and
must be repeated after the connections have been allowed.

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 79 of 107

Figure 43: Integrating Cinterion WTK manually - Platform folder

After clicking the Next button the WTK interface is queried, the available emulator data dis-
played and the integration can be finished with the Finish button.

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 80 of 107

Figure 44: Integrating Cinterion WTK manually - Finish

10.3.3 Opening the Provided WTK Samples

The Cinterion WTK provides the existing samples in a NetBeans project format as well. They
can simply be opened inside NetBeans via the menu item "File" --> "Open Project…" and nav-
igating inside the open dialog to the sample location of either "Documents and Settings\All Us-
ers\Cinterion EHS5 WTK Examples\NetBeansSamples" under Windows XP or "Users\Public\
Cinterion EHS5 WTK Examples\NetBeansSamples" under Windows Vista and above.

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 81 of 107

10.3.4 Creating a New MIDlet

To create a new MIDlet select the menu item "File" --> "New Project…". In the following window
select the category "Java ME" and the project type "Mobile Application".

Figure 45: Creating a new MIDlet - Choose project

After clicking the Next button the project name and location can be entered. Depending on the
employed NetBeans version please unselect the option "Create Hello MIDlet" if available, be-
cause the provided MIDlet template does not fit the IMP profile very well. If the option "Create
Default Package and Main Executable Class" is available, it may remain selected causing the
frame of an empty MIDlet being created automatically.

Figure 46: Creating a new MIDlet - Enter name and location

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 82 of 107

In the next dialog it must be ensured that the correct emulator platform "IMP-NG EHS5 Wire-
less Toolkit by Cinterion", the correct device "IMP_NG_EHS5_REMOTE1", the correct device
configuration "CLDC-1.1" and the correct device profile "IMP-NG" are selected.

Figure 47: Creating a new MIDlet - Configure platform

After clicking the Finish button a newly created MIDlet project is available under the NetBeans
project tree. If not already completed the frame of an empty MIDlet program can be created by
right-clicking into the project tree and selecting "New" --> "MIDlet…". In the following wizard en-
ter the name for the MIDlet and the MIDlet class and click the Finish button.

Figure 48: Creating a new MIDlet - Program name

Java User’s Guide
10.3 Using NetBeans for Java Development
83

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 83 of 107

Now, a corresponding Java file with the source of the basic MIDlet interface is created inside
the source tree of the project. The only things that remains to be done is to add a call of "noti-
fyDestroyed()" to the "destroyApp()" method and if required a class constructor.

Figure 49: Creating a new MIDlet - HelloWorld.java

When the ATCommand class is to be used the corresponding library must be added to the proj-
ect resources. Right-click on the "Resources" item in the "Projects" binder and select "Add Jar/
Zip…" from the popup menu. Then navigate to the folder "Program Files\Cinterion\CMTK\
EHS5\WTK\resources" and select the library file "cwmlib_1.0.jar". The provided example "AtC-
mdDemo" uses a local copy of this library. This is also possible.

Finally, the actual functionality can be implemented and the project can be started and de-
bugged inside the module as other NetBeans projects. Please note that you must allow Net-
Beans and the debug agent to pass the firewall and configure the debug IP connection as a
home network to be able to execute and debug MIDlets inside the device.

Java User’s Guide
11 Java Security
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 84 of 107

11 Java Security

The Java Security model follows the specification of MIDP 2.0 and conforms to IMP-NG. It in-
tegrates only a simple protection domain concept since protection domains are not required for
module use cases.

Java Security is divided into two main areas:
• Secure MIDlet data links (HTTPS, Secure Connection) (see Section 11.1)
• Execution of signed/unsigned MIDlets (see Section 11.2)

The interface of Java Security offers the following functionality:
• Insert/delete keystores for MIDlet security (see Section 11.2.1)
• Toggle MES (default is ON see Section 11.3)
• Toggle HTTPS certificate verification (default is OFF, see Section 11.1)
• Add / Delete certificates for HTTPS certificate verification
• Add / Delete certificates and private keys for HTTPS client authentication (see Section

11.1.1)

Restrictions:
• The module does not supply user independent date/time base. Therefore no examination

of the validity of the expiration date/time of the certificate takes place.

Java User’s Guide
11.1 Secure Data Transfer
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 85 of 107

11.1 Secure Data Transfer

Secure data transfer allows MIDlets to use safe data links to external communications partners.
The specification IMP-NG defines two Java classes with this characteristic - HTTPSConnection
and SecureConnection.

The implementation follows the recommendations laid out in IMP-NG:

HTTPSConnection, SecureConnection

• HTTP / SecureConnection over SSL version 3.0 and TLS versions 1.0, 1.1 and 1.2.
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_NULL_SHA
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA

ECC cipher suites:
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

Static ECDH cipher suites:
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_RC4_128_SHA
TLS_ECDH_ECDSA_WITH_RC4_128_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

CyaSSL extension - eSTREAM cipher suites:
TLS_RSA_WITH_HC_128_CBC_MD5
TLS_RSA_WITH_HC_128_CBC_SHA
TLS_RSA_WITH_RABBIT_CBC_SHA

SHA-256 cipher suites:
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_NULL_SHA256

AES-GCM cipher suites:
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Java User’s Guide
11.1 Secure Data Transfer
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 86 of 107

ECC AES-GCM cipher suites:
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

AES-CCM cipher suites:
TLS_RSA_WITH_AES_128_CCM_8_SHA256
TLS_RSA_WITH_AES_256_CCM_8_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8_SHA384

Two modes exist for safe data links.

Mode 1:
• No examination of the server certificate takes place when setting up the connection. The

authenticity of the server certificate is not verified. See Figure 50.

Figure 50: Mode 1 - Customer Root certificate does not exist

HTTPS server

Public key from
owner of the
certificate

Server
certificate

(X.509)

TCP/IP connection

Module

Private key
from owner of
the certificate

No check of
the certificate
by the module

Java User’s Guide
11.1 Secure Data Transfer
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 87 of 107

Mode 2 (see Section 11.2.1, 1. Step):
• HTTPS server certificate (that is a certificate store of trusted CA certificates) is inside of the

module (cmd: "Add Certificate" was executed).
• Certificates are saved in DER format.
• Command to switch on certificate verification for HTTPS connections was sent.
• The server certificate is examined when setting up a connection. Two configurations are

valid. The server certificate is identical to the certificate in the module (both certificates are
self signed root certificates) or the server certificate forms a chain with the certificate of the
module. Thus the authenticity of the server certificate can be examined with the help of the
certificate of the module. See Figure 51 and Figure 52.

Figure 51: Mode 2 - Server certificate and certificate into module are identical

HTTPS server

Public key from
owner of the
certificate (CA)

CA Root
certificate

(X.509)
self signed

TCP/IP connection
Module

Private key
from owner of
the certificate

As server certific
ate

As java security certificate

Test whether
certificates
are identical

Java User’s Guide
11.1 Secure Data Transfer
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 88 of 107

Figure 52: Mode 2 - Server certificate and self signed root certificate in module form a chain

11.1.1 HTTPS - Client Authentication

SSL enabled server can be configured to require client authentication. When an SSL enabled
server requests client authentication it requires a separate piece of digitally signed data from
the client to authenticate itself. The server uses the digitally signed data to validate the public
key in the certificate and to authenticate the identity the certificate claims to represent.

The SSL protocol requires the client to create a digital signature by creating a one-way hash
from data generated randomly during the handshake and known only to the client and server.
The data hash is then encrypted with the private key that corresponds to the public key in the
certificate being presented to the server.

To use this process, it is possible to deposit a client certificate (with public key) and a client
private key on the module (for configuration command see Section 11.5.8).

The client certificate file and the client private key file must be in the file format "*.pem".

HTTPS server

Public key from
owner of the
certificate (CA)

CA Root
certificate

(X.509)
self signed

TCP/IP connection
Module

Private key
from owner of

the server
certificate

As java security certificate

Test whether
certificates
are identical

public key from
owner of the
certificate

Server
Certificate

(X.509)

Private key
from owner of

the CA
certificate

signature of
the CA

CA signed the server certificate

Chain of certificates

Server
certificate

CA root
certificate

Create certificate chain and check these

Java User’s Guide
11.2 Execution Control
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 89 of 107

11.2 Execution Control

The Java environment of the ME supports two modes.

Unsecured mode:
• The device starts all Java applications (MIDlets).
• Java Security Commands that will be accepted in this mode:

Set Customer Keystore
Switch on/off Certificate Verification of the HTTPS Connections, Untrusted
Add Certificate for Verification of the HTTPS Connections, Untrusted
Del Certificate for Verification of the HTTPS Connections, Untrusted
Del all Certificates for Verification of the HTTPS Connections, Untrusted
Add Client Certificate for Client-Verification of the HTTPS Connections, Untrusted
Del Client Certificate for Client-Verification of the HTTPS Connections, Untrusted

Secured mode:
• A condition for the secured mode of the device is the existence of a customer ME keystore

with one certificate for the protection domain "operator" inside of the module.
• The customer can activate the secured mode of the device. To do so, the customer sends

an ME keystore to the device (over an AT interface). The device changes from unsecured
mode to secured mode. Now, the module will only start Java applications with a valid sig-
nature. In addition, the device will only accept special commands from the customer as long
as they are marked with a signature. The device examines each command with the public
key of the "operator" certificate from customer ME keystore.

• Java Security Commands that will be accepted in this mode:
Del Customer Keystore
Switch on/off Certificate Verification of the HTTPS Connections
Switch on/off OBEX Functionality
Add Certificate for Verification of the HTTPS Connections
Del Certificate for Verification of the HTTPS Connections
Del all Certificates for Verification of the HTTPS Connections
Add Client Certificate for Client-Verification of the HTTPS Connections
Del Client Certificate for Client-Verification of the HTTPS Connections

Standard behavior of the module:
Gemalto M2M supplies modules with unsecured mode as the default configuration.

Insert the customer ME keystore:
- The module changes into the mode "trusted" for MIDlet execution. "Untrusted Domain"

is OFF.
- HTTPS certificate verification is ON.
- MES is OFF.

Remove the customer ME keystore:
- The module changes into the mode "untrusted" for MIDlet execution.
- HTTPS certificate verification is OFF
- MES is ON.

Java User’s Guide
11.2 Execution Control
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 90 of 107

11.2.1 Change to Secured Mode Concept

Create and insert an ME keystore:
A condition for the change to secured mode is the existence of a customer ME keystore with
certificate within the domain "operator".

Figure 53: Insert customer ME keystore

After this action the module is in the following conditions:
- The module changes into the mode "trusted" for MIDlet execution. "Untrusted Domain"

is OFF.

Generate customer ME keystore

Generate ME keystore

AT^SJMSEC

Binary data of ME keystore

cmd id Binary data of ME keystore

Build binary data for AT
command AT^SJMSEC

Computer
ModuleSend to module

Signaturecmd len

SE keystore
(private key
public key)

Customer environment

ME keystore
(public key)

Java User’s Guide
11.2 Execution Control
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 91 of 107

11.2.2 Concept for the Signing the Java MIDlet

Figure 54: Prepare MIDlet for secured mode

SE-Keystore
(private key)

G
en

er
at

e
H

A
S

H

Java-MIDlet
JAR-File

Java-MIDlet
JAD-File

JAR-File HASH (SHA1)
E

n
co

di
ng

 w
ith

 p
riv

at
e

ke
y

Encoded JAR-File HASH

Add the signature (is base64
encoded) into the JAD file as the
value of the MIDlet-Jar-RSA-SHA1
attribute

E
nc

od
in

g
 b

as
e6

4

Customer Environment

Java User’s Guide
11.3 Application and Data Protection
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 92 of 107

11.3 Application and Data Protection

In addition to the Java secured mode it is possible to prevent the activation of the Module Ex-
change Suite. When Module Exchange Suite access is deactivated with AT^SJMSEC, it is no
longer possible to access the Flash file system on the module. A condition for the deactivation
of the access to the Flash file system is the existence of a customer ME keystore inside of the
module (see Section 11.2.1).

The default state of MES is ON.

11.4 Structure and Description of the Java Security Commands

Specific Java Security commands are available in the Java Security environment. These com-
mands are transferred to the module with the help of the AT command AT^SJMSEC. This com-
mand allows to send binary data to the module. The binary data contain the actual Java
Security commands.

Each Java Security command is module specific. It contains the IMEI of the module. Before the
command is executed, the IMEI is checked.

11.4.1 Structure of the Java Security Commands

Figure 55: Structure of Java Security commands

UINT16

cmdtotal len

UINT16 UINT16

parameter unit signature unit...
General structure

param num

UINT16 signatureUINT16parameter unit

param id param data

UINT16 UINT16 ...

param len

param len = all bytes of the parameter structure (including size of "param len")

total len = all bytes of the command structure (including size of "total len")

part of the cmd structure for the creation of the signature

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 93 of 107

Table 3: List of commands

CMD ID Description

0x0001 Set Manufacturer Keystore

0x0002 Del Manufacturer Keystore

0x0003 Switch on/off Certificate Verification of the HTTPS Connections

0x0031 Switch on/off Certificate Verification of the HTTPS Connections, Untrusted

0x0004 Switch on/off OBEX Functionality

0x0005 Set Customer Keystore

0x0006 Del Customer Keystore

0x0007 Add Certificate for Verification of the HTTPS Connections

0x0071 Add Certificate for Verification of the HTTPS Connections, Untrusted

0x0008 Del Certificate for Verification of the HTTPS Connections

0x0081 Del Certificate for Verification of the HTTPS Connections, Untrusted

0x0009 Del all Certificates for Verification of the HTTPS Connections

0x0091 Del all Certificates for Verification of the HTTPS Connections, Untrusted

0x000A Add Client Certificate for Client-Verification of the HTTPS Connections

0x00A1 Add Client Certificate for Client-Verification of the HTTPS Connections, Untrusted

0x000B Del Client Certificate for Client-Verification of the HTTPS Connections

0x00B1 Del Client Certificate for Client-Verification of the HTTPS Connections, Untrusted

Table 4: List of parameters

Param ID Param Len Param Data Description

0x0001 D Binary data DER/PEM coded certificate, keystore data

0x0002 0x0005 0x00 or 0x01 on/off switch, 0x00 = off, 0x01 = on

0x0003 0x0014 IMEI numeric numbers in ASCII format
(zero terminated string)

0x0004 256 Signature data SHA-1 signature the of command

0x0005 D File data file name, used to store a certificate in the module
(zero terminated string)

0x0006 D Binary key data PEM coded private key data

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 94 of 107

Table 5: Command structure

Set Manufacturer Keystore

Total len 0x0001 0x0003 Param unit IMEI Param unit keystore Param unit signature

Del Manufacturer Keystore

Total len 0x0002 0x0002 Param unit IMEI Param unit signature

Switch on/off Certificate Verification for HTTPS Connections

Total len 0x0003 0x0003 Param unit IMEI Param unit switch Param unit signature

Switch on/off Certificate Verification for HTTPS Connections, Untrusted

Total len 0x0031 0x0001 Param unit switch

Switch on/off OBEX Functionality

Total len 0x0004 0x0003 Param unit IMEI Param unit switch Param unit signature

Set Customer Keystore

Total len 0x0005 0x0003 Param unit IMEI Param unit keystore Param unit signature

Del Customer Keystore

Total len 0x0006 0x0002 Param unit IMEI Param unit signature

Add Certificate

Total len 0x0007 0x0004 Param unit IMEI Param unit file name Param unit bin data Param unit signature

Add Certificate, Untrusted

Total len 0x0071 0x0002 Param unit file name Param unit bin data

Del Certificate

Total len 0x0008 0x0003 Param unit IMEI Param unit file name Param unit signature

Del Certificate, Untrusted

Total len 0x0081 0x0001 Param unit file name

Del all Certificate

Total len 0x0009 0x0002 Param unit IMEI Param unit signature

Del all Certificate, Untrusted

Total len 0x0091 0x0000

Add HTTPS Client Certificate

Total len 0x000A 0x0004 Param unit IMEI Param unit bin data Param unit bin key data Param unit signature

Add HTTPS Client Certificate, Untrusted

Total len 0x00A1 0x0002 Param unit bin data Param unit bin key data

Del HTTPS Client Certificate

Total len 0x000B 0x0002 Param unit IMEI Param unit signature

Del HTTPS Client Certificate, Untrusted

Total len 0x00B1 0x0000

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 95 of 107

11.4.2 Build Java Security Commands

Figure 56: Build Java Security command

ge
ne

ra
te

 H
A

S
H

SE-Keystore
(private key)

Customer Environment

e
nc

od
in

g
w

ith
 p

ri
va

te
 k

ey

HASH (SHA1)

signature

b
ui

ld
 to

ta
l c

om
m

an
d

cmd len

cmd parameter unit

signature unit

...param num

cmd parameter unit ...param num ++

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 96 of 107

11.4.3 Send Java Security Command to the Module

The AT command AT^SJMSEC operates in two modes.
• Direct command mode, i.e., the Java Security command is part of the AT command

- Del customer keystore
- Switch on/off certificate verification for HTTPS connections
- Switch on/off OBEX functionality
- Del certificate
- Del all certificate
- Del HTTPS client certificate

• Indirect command mode, i.e., the Java Security command is stored in a file within the module
- Set customer keystore
- Add certificate
- Add HTTPS client certificate

For the direct commands you can use the jseccmd tool (see Section 11.5.8). The output of
this tool can be used for the <data> parameter of the AT^SJMSEC command.

Example:

For the indirect commands you can also use the jseccmd tool (see Section 11.5.8). The out-
put of this tool is a binary stream. You can save the stream to a file.

This file is copied into the file system of the module (root). MES is used for it. Then the AT com-
mand will be executed.

Example:

AT^SJMSEC="cmd","230103000300140003003030343430313038303832313538360005000
20000040104007D140282B3BF73AA6F542C6F93B1FAE94783F23B57241EFE57DFD7B0E7B96
F0B934AA6C33B8BBD873746FE9BBEF5E238DEC1549C0E7B5FC6BE1001D6F361B8077FF7333
07C06C297A26CE411C182E6757DD7181D20DF097044B38F9D22F19A503F719A67F00E0E244
DABC90DA2782E96E85A8B5DFFE6128138629087D443A97D19E010393CC9EFB64D58D139084
31C52DD17E44150ECC4D5B58179263EEA3C288269E52C9BCB3DF21BEB9753E847AE4BB09BA
EFC48A90ECB853CF34CF6AC8486E5F92F3715509160EDFFEC40380018122F9B26AE6E385AA
ABE42A9DE094164A6132286EF9E0848DE1169E4EEA830D96873023E524723E03A4D45D7021
81DA079"

AT^SJMSEC="file","SetCustomerKeystore.bin"

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 97 of 107

11.4.3.1 AT^SJMSEC Command Syntax

Test command syntax

Read command syntax

Write command syntax

Test Command

AT^SJMSEC=?

Response(s)

^SJMSEC: <list of supported <CmdMode>s),(max. string length of <CmdData>)

OK

Read Command

AT^SJMSEC?

Response(s)

^SJMSEC: <keystore state>,<https state>,<obex state>,<https client cert>

OK
ERROR
+CME ERROR: 21

Write Command

AT^SJMSEC=<CmdMode>,<CmdData>

Response(s)

[^SJMSEC: <err code>,<str>]

OK
ERROR
+CME ERROR: 21

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 98 of 107

Parameter description

Command mode (string).

“cmd“ Direct command mode, i.e., the subsequent <CmdData> contains the
Java Security command.

"file“ Indirect command mode, the subsequent <CmdData> specifies the
file name, where the Java security command is stored. Each file shall be
copied into the root directory of the module's flash file system. To copy the
files the MES has to be used.

Command data (string).

The <CmdData> depends on the <CmdMode> setting:
• If <CmdMode> is set to "cmd", <CmdData> contains the ASCII coded hex data of the Java

Security command.
• If <CmdMode> is set to "file", <CmdData> provides the name of the file that contains the

Java Security command in binary format.

Keystore usage (string).

“0“ No keystore installed. Internal mode dedicated for manufacturer.
"1“ No keystore installed. Unsigned midlets can still be installed (delivered).
"2“ Keystore installed. Only signed midlets can be installed.

Security check (string).

“0“ HTTPS connection or Secure Connection without check against the
certificate store (default)

"1“ HTTPS connection or Secure Connection with check against the
certificate store

Obex state (string).

“0“ Start of Module Exchange Suite is not permitted
"1“ Start of Module Exchange Suite is permitted (default)

<CmdMode>(str)

<CmdData>(str)

<keystore state>(str)

<https state>(str)

<obex state>(str)

Java User’s Guide
11.4 Structure and Description of the Java Security Commands
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 99 of 107

HTTPS client certificate (string).

“0“ Client certificate not installed (default)
"1“ Client certificate installed

Error codes (string).

“0“ (no error)
"1“ wrong command format
“2“ wrong command parameter format
"3“ parameter unknown
“4“ command unknown
"5“ parameter IMEI is missing
“6“ parameter signature is missing
"7“ keystore error
“8“ certificate file exits
"9“ cannot create certificate file
“10“ certificate file does not exists
"11“ jsec.cfg error
“12“ cannot delete certificate file
"13“ certificate store does not exists
“14“ cannot read command file
"15“ IMEI is wrong
“16“ cannot create key file
"17“ unknown error

Error string contains the Java exception message.

Please note that the module must be reset after each command.

<https client cert>(str)

<err code>(str)

<str>(str)

Java User’s Guide
11.5 Create a Java Security Environment Step by Step
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 100 of 107

11.5 Create a Java Security Environment Step by Step

11.5.1 Create SE Keystore

Java keystores (SE keystore) provide a mechanism for storing and deploying X.509 certificates
and private keys.

The SE keystore contains the key pairs for signing data. For producing the key store with keys
the tool "keytool.exe" can be used. The program is in the Java Development Kit (JDK). For a
description see http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

For the RSA key a key size of 2048 is used.

Example:

11.5.2 Create Digital Certificate File from SE Keystore

Based on the previously generated keystore a digital certificate file in DER encoded binary
X.509 format (*.der or *.cer) can be created, thus exporting the digital certificate (public key)
that will be used as the module’s public key.

Example:

11.5.3 Create Certificate Request File from SE Keystore

Based on the previously generated SE keystore a certificate request file (CRF) in PEM for-
mat(*.pem) can be created, that can be used as the module’s private key required as input for
the Java security command to add the client certificate for verification for HTTPS connections.

Example:

keytool -genkey -alias operator -keypass keypass -keystore ./se_customer.ks
 -storepass keystorepass -sigalg SHA1withRSA -keyalg RSA -keysize 2048

keytool -export -alias operator -file se_customer.der
-keystore ./se_customer.ks -storepass keystorepass

keytool -certreq -alias operator -sigalg SHA1withRSA -file .\se_customer.pem
-keypass keypass -keystore .\se_customer.ks -storepass keystorepass

Java User’s Guide
11.5 Create a Java Security Environment Step by Step
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 101 of 107

11.5.4 Create HTTPS SE Keystore

The procedure to create HTTPS SE keystore is almost identical to the above mentioned pro-
cedure to create the SE keystore. The main difference is the HTTPS server's IP address in the
CN field of the -dname parameter that will have to be specified.

Example:

11.5.5 Create Digital Certificate File from HTTPS SE Keystore

Based on the previously generated HTTPS SE keystore a digital certificate file in DER encoded
binary X.509 format (*.der or *.cer) can be created, thus exporting the digital certificate (public
key) that will be used as HTTPS server's certificate file as input for the Java security command
of add and delete certificate for verification for HTTPS connections.

Example::

11.5.6 Create Certificate Request File from HTTPS SE Keystore

Based on the previously generated SE keystore a certificate request file (CRF) in PEM for-
mat(*.pem) can be created, that can be used as the HTTPS server's private key required as
input for the Java security command to add the client certificate for verification for HTTPS con-
nections.

Example:

11.5.7 Create ME Keystore

The MEKeytool utility enables you to import keys from Java SE keystores.
MEKeytool is an executable file located under "wtk\bin".

Example:

keytool -genkey -keyalg RSA
-dname "CN=192.168.42.1, O=OrgnizationName, OU=DepartmentName,
L=CityName, S=StateName, C=DE"
-alias server -keypass keypass -keystore .\server.ks
-storepass keystorepass

Keytool -export -alias server -file server.der -keystore .\server.ks
-storepass keystorepass

Keytool -certreq -alias server -sigalg SHA1withRSA -file .\server.pem
-keypass keypass -keystore .\server.ks -storepass keystorepass

mekeytool -import -MEkeystore ./me_customer.ks -alias operator
 -domain operator -keystore ./se_customer.ks -storepass keystorepass

Java User’s Guide
11.5 Create a Java Security Environment Step by Step
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 102 of 107

11.5.8 Create Java Security Commands

For producing the java security commands the tool "jseccmd.jar" can be used. This program is
located under "wtk\bin".

Command to insert the customer ME keystore

Command to remove the customer ME keystore

Command to switch ON certificate verification for HTTPS connections (secured mode)

Command to switch ON certificate verification for HTTPS connections (unsecured mode)

Command to switch OFF certificate verification for HTTPS connections (secured mode)

Command to switch OFF certificate verification for HTTPS connections (unsecured mode)

java -jar jseccmd.jar -cmd SetCustomerKeystore
 -imei 012345678901234 -alias operator
 -keypass keypass -storepass keystorepass
 -keystore ./se_customer.ks
 -filename ./me_customer.ks > SetCustomerKeystore.bin

java -jar jseccmd.jar -cmd DelCustomerKeystore
 -imei 012345678901234 -alias operator
 -keypass keypass -storepass keystorepass
 -keystore ./se_customer.ks > DelCustomerKeystore.txt

java -jar jseccmd.jar -cmd HttpsVerifyOn
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks > HttpsVerifyOnTrusted.txt

java -jar jseccmd.jar -cmd HttpsVerifyOnUntrusted >
HttpsVerifyOnUntrusted.txt

java -jar jseccmd.jar -cmd HttpsVerifyOff
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks > HttpsVerifyOffTrusted.txt

java -jar jseccmd.jar -cmd HttpsVerifyOffUntrusted >
HttpsVerifyOffUntrusted.txt

Java User’s Guide
11.5 Create a Java Security Environment Step by Step
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 103 of 107

Command to ADD certificate for verification for HTTPS connections using the HTTPS server’s
certificate file in DER format (secured mode)

Command to ADD certificate for verification for HTTPS connections using the HTTPS server’s
certificate file in DER format (unsecured mode)

Command to DELETE certificate for verification for HTTPS connections (secured mode)

Command to DELETE certificate for verification for HTTPS connections (unsecured mode)

Command to DELETE ALL certificates for verification for HTTPS connections (secured mode)

Command to DELETE ALL certificates for verification for HTTPS connections (unsecured
mode)

Command to ADD client certificate for verification for HTTPS connections using the client cer-
tificate file and the private key file in PEM format (secured mode)

java -jar jseccmd.jar -cmd AddHttpsCertificate
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks
 -filename ./server.der > AddHttpsCertificateTrusted.bin

java -jar jseccmd.jar -cmd AddHttpsCertificateUntrusted
-filename ./server.der > AddHttpsCertificateUntrusted.bin

java -jar jseccmd.jar -cmd DelHttpsCertificate
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks
 -filename server.der > DelHttpsCertificateTrusted.txt

java -jar jseccmd.jar -cmd DelHttpsCertificateUntrusted >
-filename server.der > DelHttpsCertificateUntrusted.txt

java -jar jseccmd.jar -cmd DelAllHttpsCertificates
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass

-keystore ./se_customer.ks > DelAllHttpsCertificatesTrusted.txt

java -jar jseccmd.jar -cmd DelAllHttpsCertificatesUntrusted >
DelAllHttpsCertificatesUntrusted.txt

java -jar jseccmd.jar -cmd AddHttpsClientCertificate
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks
 -filename ./server.pem

-keyfilename se_customer.pem > AddHttpsClientCertificateTrusted.bin

Java User’s Guide
11.5 Create a Java Security Environment Step by Step
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 104 of 107

Command to ADD client certificate for verification for HTTPS connections using the client cer-
tificate file and the private key file in PEM format (Unsecured mode)

Command to DELETE client certificate for verification for HTTPS connections (secured mode)

Command to DELETE client certificate for verification for HTTPS connections (unsecured
mode)

Command to switch ON module exchange functionality

Command to switch OFF module exchange functionality

java -jar jseccmd.jar -cmd AddHttpsClientCertificateUntrusted
-filename ./server.pem

-keyfilename se_customer.pem > AddHttpsClientCertificateUntrusted.bin

java -jar jseccmd.jar -cmd DelHttpsClientCertificate
 -imei 012345678901234 -alias operator
 -storepass keystorepass -keypass keypass

-keystore ./se_customer.ks > DelHttpsClientCertificateTrusted.txt

java -jar jseccmd.jar -cmd DelHttpsClientCertificateUntrusted >
DelHttpsClientCertificateUntrusted.txt

java -jar jseccmd.jar -cmd ObexActivationOn
 -imei 012345678901234 -alias keyname
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks > ObexActivationOn.txt

java -jar jseccmd.jar -cmd ObexActivationOff
 -imei 012345678901234 -alias keyname
 -storepass keystorepass -keypass keypass
 -keystore ./se_customer.ks > ObexActivationOff.txt

Java User’s Guide
11.6 Attention
105

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 105 of 107

11.5.9 Sign a MIDlet

Use the tool "jadtool.exe" to sign a Java MIDlet and add certificates into it. This program is lo-
cated under "wtk\bin".

First step: Add signature

Second step: Add certificates

The best way is of course to use a development environment (Netbeans, Eclipse).

11.6 Attention

The central element of Java Security is the private key. If Java Security is activated and you
lose the private key, then the module is useless. You have no chance of deactivating Java Se-
curity, downloading of a new Midlet or starting any other operation concerning Java Security.
To prevent problems you are strongly advised to secure the private key.

jadtool -addjarsig -jarfile ./helloworld.jar
 -inputjad ./helloworld.jad
 -outputjad ./helloworld.jad
 -alias operator -storepass keystorepass
 -keypass keypass -keystore ./se_customer.ks
 -encoding UTF-8

jadtool -addcert
 -inputjad ./helloworld.jad
 -outputjad ./helloworld.jad
 -alias operator -storepass keystorepass
 -keypass keypass -keystore ./se_customer.ks

Java User’s Guide
12 Differences to EGS5/TC65i
106

 ehsx_java_usersguide_v07 2015-02-13
Confidential / Released

Page 106 of 107

12 Differences to EGS5/TC65i

This chapter gives a short overview of the main differences in the Java implementation be-
tween established Gemalto M2M products like TC65i or EGS5 and the newer product EHSx.

• The structure of the wtk/sdk has been changed slightly. Most notably classes.zip has been
split up in multiple .jar files, so called stubs. The HTML documentation has also been split
up into different packages. There is one core package (html_impng) containing CLDC, IMP-
NG and all Cinterion APIs and there are additional packages for further JSRs.

• A view hardware interface functions share the same hardware pins. Therefore some hard-
ware interfaces need to be enabled by AT command before they can be used via the Java
API.

• MIDlet installation, start, stop and de-installation is controlled by the AT command
AT^SJAM. The AT command AT^SJRA is deprecated. After installation the MIDlet is stored
in an internal section of the flash file system. This section also holds the MIDlets’ "Record-
Store". This means MIDlets and their record stores are not visible in the flash file system.

• In order to fit to the improved MIDlet installation mechanisms and also to handle multiple
MIDlets the OTAP mechanism has been adapted. The "Application directory" parameter
does no longer exist. The "JAD file URL" parameter can now also be a partial URL (e.g. to
a specific server), omitting the file name itself.

• The Java security AT command AT^SJSEC has been replaced by AT^SJMSEC offering
extended functionality.

• The mechanism to start MIDlets automatically at system startup does require an AT com-
mand setting as well as certain properties in the descriptor of MIDlet.

• The Java file access API (FileConnection) is now a certified JSR75 implementation and is
therefore no longer in the Cinterion package.

• The Watchdog class has been replaced by the Watchdog2 class. The Watchdog class is
now deprecated.

• The class NetExtension has been added to offer improved network functionality and error
reporting.

• The class FileExtension has been added to offer improved error reporting.
• The BearerControl class has been extended to handle multiple bearer (multiple PDP con-

texts) in parallel.
• Java standard APIs have been added: JSR280 (XML), JSR177 CRYPTO, JSR179 LOCA-

TION (only for EHS8)
• System.currentTimeMilis() always returns the time of the RTC that can be set with

AT+CCLK. This also affects the Calendar class.
• The AT^SJNET parameter <timeout> has been changed in its meaning.

107

 M2M.GEMALTO.COM

About Gemalto

Gemalto (Euronext NL0000400653 GTO) is the world leader in digital security with 2011 annual
revenues of €2 billion and more than 10,000 employees operating out of 74 offices and 14 Research
& Development centers, located in 43 countries.

We are at the heart of the rapidly evolving digital society. Billions of people worldwide increasingly
want the freedom to communicate, travel, shop, bank, entertain and work - anytime, everywhere
- in ways that are enjoyable and safe. Gemalto delivers on their expanding needs for personal
mobile services, payment security, authenticated cloud access, identity and privacy protection,
eHealthcare and eGovernment efficiency, convenient ticketing and dependable machine-to-
machine (M2M) applications.

Gemalto develops secure embedded software and secure products which we design and
personalize. Our platforms and services manage these secure products, the confidential data they
contain and the trusted end-user services they enable. Our innovations enable our clients to offer
trusted and convenient digital services to billions of individuals.

Gemalto thrives with the growing number of people using its solutions to interact with the digital
and wireless world.

For more information please visit
m2m.gemalto.com, www.facebook.com/gemalto, or Follow@gemaltom2m on twitter.

Gemalto M2M GmbH
St.-Martin-Str. 60
81541 Munich
Germany

©
 G

e
m

a
lto

 2
01

5.
 A

ll
rig

ht
s

re
se

rv
ed

. G
e

m
al

to
,

th
e

G
e

m
al

to
 lo

go
, a

re
 tr

ad
em

a
rk

s
a

nd
 s

er
vi

ce
 m

a
rk

s
of

 G
em

a
lto

 a
n

d
ar

e
re

g
is

te
re

d
in

 c
er

ta
in

 c
ou

nt
rie

s.
 A

p
ril

 2
01

3

	Content
	Tables
	Figures
	1 Preface
	1.1 Document History

	2 Overview
	2.1 Related Documents
	2.2 Terms and Abbreviations

	3 Installation
	3.1 System Requirements
	3.2 Installation CD Content
	3.3 Cinterion Mobility Toolkit Installation
	3.3.1 Installation Prerequisites
	3.3.2 Installing CMTK

	3.4 CMTK Uninstall
	3.5 Upgrades

	4 Software Platform
	4.1 Software Architecture
	4.2 Hardware Interfaces
	4.2.1 ASC0 - Serial Device
	4.2.2 ASC1 - Serial Device
	4.2.3 General Purpose I/O
	4.2.4 ADC
	4.2.5 PWM/DAC
	4.2.6 Digital Audio Interface (DAI)
	4.2.7 I2C
	4.2.8 SPI
	4.2.9 USB

	4.3 Other Interfaces
	4.3.1 IP Networking
	4.3.2 Media
	4.3.3 Others

	4.4 Data Flow of a Java Application Running on the Module
	4.5 Handling Interfaces and Data Service Resources
	4.5.1 Module States
	4.5.1.1 State 1: Default – Module after Power-Up
	4.5.1.2 State 2: Default - System.out is Configured
	4.5.1.3 State 3: User Specific Java Application Started
	4.5.1.4 State 4: Typical Deployment

	5 Maintenance
	5.1 IP Service
	5.2 Power Saving
	5.3 Airplane Mode
	5.4 Alarm
	5.5 Shutdown
	5.5.1 Automatic Shutdown
	5.5.2 Manual Shutdown
	5.5.3 Restart after Switch Off
	5.5.4 Watchdog

	5.6 Special AT Command Set for Java Applications
	5.6.1 Switching from Data Mode to Command Mode
	5.6.2 Mode Indication after MIDlet Startup
	5.6.3 Long Responses
	5.6.4 Configuration of Serial Interface (ASC0, ASC1)
	5.6.5 Java Commands

	5.7 System Out
	5.7.1 Serial interfaces
	5.7.2 File

	5.8 Restrictions
	5.8.1 Flash File System
	5.8.2 Memory
	5.8.3 JAD File Size
	5.8.4 AT Command API
	5.8.5 FileConnection API

	5.9 System Time
	5.10 GPS Services

	6 MIDlets
	6.1 MIDlet Documentation
	6.2 MIDlet Life Cycle
	6.3 Multiple MIDlets
	6.4 Hello World MIDlet

	7 File Transfer to Module
	7.1 Module Exchange Suite
	7.1.1 Windows Based
	7.1.2 Command Line Based

	7.2 Over the Air Provisioning
	7.3 Security Issues
	7.3.1 Module Exchange Suite
	7.3.2 OTAP

	8 Over The Air Provisioning (OTAP)
	8.1 Introduction to OTAP
	8.2 OTAP Overview
	8.3 OTAP Parameters
	8.4 Short Message Format
	8.5 Java File Format
	8.6 Procedures
	8.6.1 Install/Update
	8.6.2 Delete

	8.7 Time Out Values and Result Codes
	8.8 Tips and Tricks for OTAP
	8.9 OTAP Tracer
	8.10 Security
	8.11 How To

	9 Compile and Run a Program without a Java IDE
	9.1 Build Results
	9.2 Compile
	9.3 Run on the Module with Manual Start
	9.4 Run on the Module with Autostart
	9.4.1 Switch on Autostart
	9.4.2 Switch off Autostart
	9.4.3 Autostart Fail-Safe

	10 Compile and Run a Program with a Java IDE
	10.1 Debug Environment
	10.1.1 Data Flow of a Java Application in the Debug Environment
	10.1.2 Emulator
	10.1.3 Change Baud Rate

	10.2 Using Eclipse for Java Development
	10.2.1 Installing the "Mobile Tools for Java" Plugin
	10.2.2 Integrating Cinterion WTK Manually
	10.2.3 Import the provided WTK Samples
	10.2.4 Creating a new MIDlet
	10.2.5 Using Eclipse Workspaces

	10.3 Using NetBeans for Java Development
	10.3.1 Installing the "Mobility" Plugin
	10.3.2 Integrating Cinterion WTK Manually
	10.3.3 Opening the Provided WTK Samples
	10.3.4 Creating a New MIDlet

	11 Java Security
	11.1 Secure Data Transfer
	11.1.1 HTTPS - Client Authentication

	11.2 Execution Control
	11.2.1 Change to Secured Mode Concept
	11.2.2 Concept for the Signing the Java MIDlet

	11.3 Application and Data Protection
	11.4 Structure and Description of the Java Security Commands
	11.4.1 Structure of the Java Security Commands
	11.4.2 Build Java Security Commands
	11.4.3 Send Java Security Command to the Module
	11.4.3.1 AT^SJMSEC Command Syntax

	11.5 Create a Java Security Environment Step by Step
	11.5.1 Create SE Keystore
	11.5.2 Create Digital Certificate File from SE Keystore
	11.5.3 Create Certificate Request File from SE Keystore
	11.5.4 Create HTTPS SE Keystore
	11.5.5 Create Digital Certificate File from HTTPS SE Keystore
	11.5.6 Create Certificate Request File from HTTPS SE Keystore
	11.5.7 Create ME Keystore
	11.5.8 Create Java Security Commands
	11.5.9 Sign a MIDlet

	11.6 Attention

	12 Differences to EGS5/TC65i

